On the Hadamard lemma and the Lipschitz condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the difference of values of a nonlinear Lipschitz continuous differential operator is always representable as the difference of values of some linear Lipschitz continuous differential operator with the same Lipschitz constant. The proof is based on the Hadamard lemma, provided that, in addition to the above requirements, the nonlinearity is continuously differentiable in spatial variables. In general case the proof is based on various criteria of the weak compactness and on various approximating statements obtained by the Steklov averaging technique.
Keywords: ordinary differential equations, Lipschitz condition, Steklov averaging.
Mots-clés : Hadamard lemma
@article{IVM_2009_12_a4,
     author = {A. I. Perov},
     title = {On the {Hadamard} lemma and the {Lipschitz} condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--48},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a4/}
}
TY  - JOUR
AU  - A. I. Perov
TI  - On the Hadamard lemma and the Lipschitz condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 36
EP  - 48
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a4/
LA  - ru
ID  - IVM_2009_12_a4
ER  - 
%0 Journal Article
%A A. I. Perov
%T On the Hadamard lemma and the Lipschitz condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 36-48
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a4/
%G ru
%F IVM_2009_12_a4
A. I. Perov. On the Hadamard lemma and the Lipschitz condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 36-48. http://geodesic.mathdoc.fr/item/IVM_2009_12_a4/

[1] Petrovskii I. G., Lektsii po obyknovennym differentsialnym uravneniyam, Nauka, M., 1964, 272 pp.

[2] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shkola, M., 1982, 272 pp. | MR | Zbl

[3] Borovskikh A. V., Perov A. I., Lektsii po obyknovennym differentsialnym uravneniyam, Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2004, 540 pp.

[4] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl

[5] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatiz, M., 1960, 624 pp.

[6] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR

[7] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[8] Gantmakher F. R., Teoriya matrits, Fizmatiz, M., 1967, 576 pp.