Solution of singular integral equations by the method of oscillating functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a singular integral equation with the Hilbert kernel in the space of summable complex-valued $2\pi$-periodic functions with the usual norm. We theoretically justify the proposed method, establish its convergence, and estimate the error.
Keywords: singular integral equation with the Hilbert kernel, average convergence, error estimates.
Mots-clés : uniform convergence
@article{IVM_2009_12_a3,
     author = {L. B. Ermolaeva},
     title = {Solution of singular integral equations by the method of oscillating functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--35},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a3/}
}
TY  - JOUR
AU  - L. B. Ermolaeva
TI  - Solution of singular integral equations by the method of oscillating functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 28
EP  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a3/
LA  - ru
ID  - IVM_2009_12_a3
ER  - 
%0 Journal Article
%A L. B. Ermolaeva
%T Solution of singular integral equations by the method of oscillating functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 28-35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a3/
%G ru
%F IVM_2009_12_a3
L. B. Ermolaeva. Solution of singular integral equations by the method of oscillating functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 28-35. http://geodesic.mathdoc.fr/item/IVM_2009_12_a3/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR | Zbl

[3] Michlin S. G., Prößdorf S., Singuläre Integraloperatoren, Akademic-Verlag, Berlin, 1980, 514 pp. | MR | Zbl

[4] Gabdulkhaev B. G., “Kvadraturnye formuly dlya singulyarnykh integralov i metod mekhanicheskikh kvadratur dlya singulyarnykh integralnykh uravnenii”, Tr. Mezhdunar. konf. po konstruktivnoi teorii funktsii, Sofiya, 1972, 35–49

[5] Ermolaeva L. B., Approksimativnye svoistva polinomialnykh operatorov i reshenie integralnykh i integrodifferentsialnykh uravnenii metodom podoblastei, Diss. $\dots$ kand. fiz.-matem. nauk, Kazan, 1987, 154 pp.

[6] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[7] Gabdulkhaev B. G., “Polinomialnye approksimatsii po V. K. Dzyadyku reshenii singulyarnykh integralnykh i integrodifferentsialnykh uravnenii”, Izv. vuzov. Matematika, 1978, no. 6, 51–62 | MR | Zbl

[8] Sofronov I. D., “O nekotorykh svoistvakh singulyarnykh operatorov i reshenii singulyarnykh integralnykh uravnenii”, DAN SSSR, 110:6 (1956), 940–942 | MR | Zbl

[9] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977, 184 pp. | MR | Zbl

[10] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 407 pp. | MR | Zbl