A quadrature method for solving integral equations of the mixed type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to quadrature methods for solving integro-operational equations. We construct computational schemes of quadrature methods and substantiate them theoretically in the sense of the general theory of approximate methods developed by L. V. Kantorovich and B. G. Gabdulkhaev.
Keywords: integro-operational equation, space of vector-valued functions, quadrature method.
@article{IVM_2009_12_a2,
     author = {A. F. Galimyanov and D. E. Saifullina},
     title = {A quadrature method for solving integral equations of the mixed type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a2/}
}
TY  - JOUR
AU  - A. F. Galimyanov
AU  - D. E. Saifullina
TI  - A quadrature method for solving integral equations of the mixed type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 22
EP  - 27
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a2/
LA  - ru
ID  - IVM_2009_12_a2
ER  - 
%0 Journal Article
%A A. F. Galimyanov
%A D. E. Saifullina
%T A quadrature method for solving integral equations of the mixed type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 22-27
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a2/
%G ru
%F IVM_2009_12_a2
A. F. Galimyanov; D. E. Saifullina. A quadrature method for solving integral equations of the mixed type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 22-27. http://geodesic.mathdoc.fr/item/IVM_2009_12_a2/

[1] Galimyanov A. F., Saifullina D. E., “Metody resheniya obobschennogo integralnogo uravneniya Volterra pervogo roda”, Izv. vuzov. Matematika, 2008, no. 9, 11–18 | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR

[3] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[4] Haverkamp R., “Approximationsfehler der Ableitungen von Interpolationspolynomen”, J. Approx. Theory, 30 (1980), 180–196 | DOI | MR | Zbl

[5] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977, 184 pp. | MR | Zbl

[6] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp. | MR | Zbl