On the Bohr--Favard inequalities for operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we estimate the resolvent of a generator of an isometric group of operators. In particular, we establish unimprovable estimates for the integral of functions that are holomorphic in a half-plane and bounded on the entire real axis. We obtain applications of the perturbation theory for linear operators.
Keywords: resolvent, generator of isometric group of operators, perturbation theory for linear operators.
@article{IVM_2009_12_a1,
     author = {A. G. Baskakov and K. A. Sintyaeva},
     title = {On the {Bohr--Favard} inequalities for operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--21},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - K. A. Sintyaeva
TI  - On the Bohr--Favard inequalities for operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 14
EP  - 21
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a1/
LA  - ru
ID  - IVM_2009_12_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A K. A. Sintyaeva
%T On the Bohr--Favard inequalities for operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 14-21
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a1/
%G ru
%F IVM_2009_12_a1
A. G. Baskakov; K. A. Sintyaeva. On the Bohr--Favard inequalities for operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 14-21. http://geodesic.mathdoc.fr/item/IVM_2009_12_a1/

[1] Bohr H., “Ein allgemeinerung Satz über die Integration eines trigonometrischen Polynomials”, Prace Math. Fiz., 43 (1935), 273–288 | Zbl

[2] Favard J., “Application de la formule sommatoire d'Euler á la démonsration de quclques propertietés extrémales des intégrales des fonctions périodiques on presque-périodiques”, Mat. Tidsskr., 1936, 81–95

[3] Levitan B. M., “Ob odnom obobschenii neravenstv S. N. Bernshteina i H. Bohr'a”, DAN SSSR, 15 (1937), 17–19

[4] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovremennaya matem. Fundamentalnye napravleniya, 9, M., 2004, 3–151 | MR | Zbl

[5] Baskakov A. G., “Neravenstva bernshteinovskogo tipa v abstraktnom garmonicheskom analize”, Sib. matem. zhurn., 20:5 (1979), 942–952 | MR | Zbl

[6] Bhatia R., Drissi D., “Perturbation theorems for Hermitian elements in Banach algebras”, Studia Math., 134:2 (1999), 111–117 | MR | Zbl

[7] Gorin E. A., “Neravenstva Bernshteina s tochki zreniya operatorov”, Vestn. Kharkovsk. un-ta, 205 (1980), 77–105 | MR | Zbl

[8] Krein M. G., “O predstavlenii funktsii integralami Fure–Stiltesa”, Uchenye zapiski Kuibyshevsk. gos. ped. in-ta, 1943, no. 7, 123–148

[9] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979, 423 pp. | MR

[10] Baskakov A. G. Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. matem., 69:3 (2005), 3–54 | MR | Zbl

[11] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, VGU, Voronezh, 1987, 165 pp. | MR

[12] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Ser. matem., 58:4 (1994), 3–32 | MR | Zbl