A cubature method for solving one class of multidimensional weakly singular integral equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider one class of two-dimensional weakly singular integral equations of the second kind on a circumference. We theoretically substantiate the applicability of a cubature method based on a special cubature formula for solving equations of the mentioned class.
Keywords: weighted Lebesgue space, integral equation, weakly singular integral, cubature method, error estimate.
Mots-clés : Gauss quadrature formula, convergence
@article{IVM_2009_12_a0,
     author = {Yu. R. Agachev and R. K. Gubaidullina},
     title = {A cubature method for solving one class of multidimensional weakly singular integral equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a0/}
}
TY  - JOUR
AU  - Yu. R. Agachev
AU  - R. K. Gubaidullina
TI  - A cubature method for solving one class of multidimensional weakly singular integral equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 3
EP  - 13
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a0/
LA  - ru
ID  - IVM_2009_12_a0
ER  - 
%0 Journal Article
%A Yu. R. Agachev
%A R. K. Gubaidullina
%T A cubature method for solving one class of multidimensional weakly singular integral equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 3-13
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a0/
%G ru
%F IVM_2009_12_a0
Yu. R. Agachev; R. K. Gubaidullina. A cubature method for solving one class of multidimensional weakly singular integral equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2009_12_a0/

[1] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962, 254 pp. | MR | Zbl

[2] Parton V. Z., Perlin P. I., Integralnye uravneniya teorii uprugosti, Nauka, M., 1977, 312 pp. | MR

[3] Khai M. V., Dvumernye integralnye uravneniya tipa nyutonovskogo potentsiala i ikh prilozheniya, Nauk. dumka, Kiev, 1993, 253 pp.

[4] Gabdulkhaev B. G., “K chislennomu resheniyu integralnykh uravnenii metodom mekhanicheskikh kvadratur”, Izv. vuzov. Matematika, 1972, no. 12, 23–39 | MR | Zbl

[5] Gabdulkhaev B. G., Gubaidullina R. K., “O kubaturnykh formulakh dlya odnogo klassa mnogomernykh slabo singulyarnykh integralov”, Materiali II Mizhnarodnoïnaukovo-praktichnoï konferentsiï “Dni nauki – 2006”, T. 35. Matematika, Dnipropetrovsk, 2006, 12–18

[6] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965, 538 pp. | MR

[7] Gabdulkhaev B. G., “Kubaturnye formuly dlya mnogomernykh singulyarnykh integralov. I”, Tr. In-ta matem. AN Bolgarii, 11, Sofiya, 1970, 181–196

[8] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[9] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Izd-vo “Vysshaya shkola”, Minsk, 1968, 320 pp.

[10] Gabdulkhaev B. G., “Kvadraturnye formuly dlya singulyarnykh integralov i metod mekhanicheskikh kvadratur dlya singulyarnykh integralnykh uravnenii”, Tr. Mezhdunarodnoi konferentsii po konstruktivnoi teorii funktsii (Varna, 19–25 maya 1970), 35–49

[11] Ivanov V. V., Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Nauk. dumka, Kiev, 1968, 287 pp. | MR

[12] Bernshtein S. N., Sobranie sochinenii, T. II, Izd-vo AN SSSR, M., 1954, 629 pp.

[13] Gabdulkhaev B. G., “Pryamye metody resheniya nekotorykh operatornykh uravnenii. I”, Izv. vuzov. Matematika, 1971, no. 11, 33–44 | MR | Zbl

[14] Gabdulkhaev B. G., “Pryamye metody resheniya nekotorykh operatornykh uravnenii. II”, Izv. vuzov. Matematika, 1971, no. 12, 28–38 | MR | Zbl