Connectivities induced by the rolling of a~ball on a~surface
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the rolling of a ball on a surface and establish new connectivities induced by this rolling. We state and prove two theorems about the dependence of these connectivities on invariants of the intrinsic geometry of the surface.
Keywords: parallel shift, multiplicative integral, motion connectivity.
@article{IVM_2009_11_a9,
     author = {V. V. Cherkasova},
     title = {Connectivities induced by the rolling of a~ball on a~surface},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--84},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a9/}
}
TY  - JOUR
AU  - V. V. Cherkasova
TI  - Connectivities induced by the rolling of a~ball on a~surface
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 79
EP  - 84
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a9/
LA  - ru
ID  - IVM_2009_11_a9
ER  - 
%0 Journal Article
%A V. V. Cherkasova
%T Connectivities induced by the rolling of a~ball on a~surface
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 79-84
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a9/
%G ru
%F IVM_2009_11_a9
V. V. Cherkasova. Connectivities induced by the rolling of a~ball on a~surface. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 79-84. http://geodesic.mathdoc.fr/item/IVM_2009_11_a9/

[1] Manturov O. V., “Multiplikativnyi integral”, Itogi nauki i tekhniki. Seriya Probl. geometrii, 22, 1990, 167–215 | MR | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl

[3] Borisov A. B., Mamaev I. S., Kilin A. A., “Kachenie shara po poverkhnosti. Novye integraly i ierarkhiya dinamiki”, Regular and chaotics, 7:1 (2002), 317–335 | MR

[4] Cherkasova V. V., “Krivolineinyi multiplikativnyi integral v zadache o kachenii shara po poverkhnosti”, Sovremennye metody fiziko-matematicheskikh nauk, T. 1, Orel, 2006, 131–133

[5] Manturov O. V., Elementy tenzornogo ischisleniya, Prosveschenie, M., 1991, 225 pp. | Zbl

[6] Palandzhyants L. Zh., Geometriya multiplikativnogo integrala, “Kachestvo”, Maikop, 1997, 48 pp.

[7] Manturov O. V., Cherkasova V. V., “Ispolzovanie vozmozhnostei paketa kompyuternoi matematiki MAPLE dlya vychisleniya multiplikativnykh integralov”, Metody informatsionnykh tekhnologii, kompyuternoi matematiki i matematicheskogo modelirovaniya v fundamentalnykh i prikladnykh nauchnykh issledovaniyakh, Kazan, 2007, 418–420