Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_11_a8, author = {A. V. Khristoforova}, title = {Dual connections on a~normalized hypersurface in an affinely connected space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--78}, publisher = {mathdoc}, number = {11}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/} }
TY - JOUR AU - A. V. Khristoforova TI - Dual connections on a~normalized hypersurface in an affinely connected space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 72 EP - 78 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/ LA - ru ID - IVM_2009_11_a8 ER -
A. V. Khristoforova. Dual connections on a~normalized hypersurface in an affinely connected space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 72-78. http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/
[1] Stolyarov A. V., “Dvoistvennaya geometriya normalizovannogo prostranstva affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2005, no. 4, 21–27
[2] Laptev G. F., “Giperpoverkhnost v prostranstve proektivnoi svyaznosti”, DAN SSSR, 121:1 (1958), 41–44 | MR | Zbl
[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl
[4] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Izd-vo Chuvashsk. gos. ped. in-ta, Cheboksary, 1994, 290 pp. | MR
[5] Khristoforova A. V., “Dvoistvennaya geometriya giperpoverkhnosti v prostranstve affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2006, no. 3, 35–42
[6] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, M., 1953, 275–382 | MR | Zbl
[7] Cartan E., “Les éspaces a connexion projective”, Tr. semin. po vektornomu i tenzornomu analizu (MGU), 1937, no. 4, 147–159 | Zbl
[8] Bortolotti E., “Connessioni nelle varieta luogo di spazi; applicazione alla geometria metrica differanziale delle congruanze di rette”, Rend. Semin. Fac. Univ. Cagliari, 1933, no. 3, 81–89 | Zbl
[9] Chakmazyan A. V., Normalnaya svyaznost v geometrii podmnogoobrazii, Armyansk. ped. in-t, Erevan, 1990, 116 pp. | MR | Zbl
[10] Finikov S. P., Teoriya par kongruentsii, GITTL, M., 1956, 444 pp.