Dual connections on a~normalized hypersurface in an affinely connected space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study problems of dual connections induced by framed submanifolds in a space of affine connection $A_{n,n}$.
Keywords: space of affine connection, regular hypersurface, framed hypersurface, affine connection, projective connection, normal connection.
@article{IVM_2009_11_a8,
     author = {A. V. Khristoforova},
     title = {Dual connections on a~normalized hypersurface in an affinely connected space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--78},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/}
}
TY  - JOUR
AU  - A. V. Khristoforova
TI  - Dual connections on a~normalized hypersurface in an affinely connected space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 72
EP  - 78
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/
LA  - ru
ID  - IVM_2009_11_a8
ER  - 
%0 Journal Article
%A A. V. Khristoforova
%T Dual connections on a~normalized hypersurface in an affinely connected space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 72-78
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/
%G ru
%F IVM_2009_11_a8
A. V. Khristoforova. Dual connections on a~normalized hypersurface in an affinely connected space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 72-78. http://geodesic.mathdoc.fr/item/IVM_2009_11_a8/

[1] Stolyarov A. V., “Dvoistvennaya geometriya normalizovannogo prostranstva affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2005, no. 4, 21–27

[2] Laptev G. F., “Giperpoverkhnost v prostranstve proektivnoi svyaznosti”, DAN SSSR, 121:1 (1958), 41–44 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl

[4] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Izd-vo Chuvashsk. gos. ped. in-ta, Cheboksary, 1994, 290 pp. | MR

[5] Khristoforova A. V., “Dvoistvennaya geometriya giperpoverkhnosti v prostranstve affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2006, no. 3, 35–42

[6] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, M., 1953, 275–382 | MR | Zbl

[7] Cartan E., “Les éspaces a connexion projective”, Tr. semin. po vektornomu i tenzornomu analizu (MGU), 1937, no. 4, 147–159 | Zbl

[8] Bortolotti E., “Connessioni nelle varieta luogo di spazi; applicazione alla geometria metrica differanziale delle congruanze di rette”, Rend. Semin. Fac. Univ. Cagliari, 1933, no. 3, 81–89 | Zbl

[9] Chakmazyan A. V., Normalnaya svyaznost v geometrii podmnogoobrazii, Armyansk. ped. in-t, Erevan, 1990, 116 pp. | MR | Zbl

[10] Finikov S. P., Teoriya par kongruentsii, GITTL, M., 1956, 444 pp.