The necessary optimality conditions for a~controllable integro-differential system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a controllable integro-differential system, estimate the growth of its solution, establish the necessary optimality conditions in terms of the variational and Pontryagin principles of maximum.
Keywords: controllable integro-differential system, variational and Pontryagin principles of maximum.
@article{IVM_2009_11_a6,
     author = {A. V. Bukina and V. A. Terletskii},
     title = {The necessary optimality conditions for a~controllable integro-differential system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--66},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a6/}
}
TY  - JOUR
AU  - A. V. Bukina
AU  - V. A. Terletskii
TI  - The necessary optimality conditions for a~controllable integro-differential system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 61
EP  - 66
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a6/
LA  - ru
ID  - IVM_2009_11_a6
ER  - 
%0 Journal Article
%A A. V. Bukina
%A V. A. Terletskii
%T The necessary optimality conditions for a~controllable integro-differential system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 61-66
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a6/
%G ru
%F IVM_2009_11_a6
A. V. Bukina; V. A. Terletskii. The necessary optimality conditions for a~controllable integro-differential system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2009_11_a6/

[1] Feichtinger G., Tragler G., Veliov V. M., “Optimality conditions for age-structured control systems”, J. Math. Anal. Appl., 288:1 (2003), 47–68 | DOI | MR | Zbl

[2] Gurtin M. E., Murphy L. F., “On the optimal harvesting of age-structured populations: some simple models”, J. Math. Biosciences, 55 (1981), 115–136 | DOI | MR | Zbl

[3] Muller J., “Optimal vaccination patterns in age-structured population”, SIAM J. Appl. Math., 59:1 (1999), 222–241 | DOI | MR

[4] Dieckmann U., Doebeli M., “On the origin of species by sympatric speciation”, Nature, 400 (1999), 354–357 | DOI

[5] Semovskii S. V., Bukin Yu. S., Scherbakov D. Yu., Vidoobrazovanie v odnomernoi populyatsii: adaptivnaya dinamika i neitralnaya evolyutsiya, http://zhurnal.ape.relarn.ru/articles/2002/125.pdf

[6] Vasilev O. V., Srochko V. A., Terletskii V. A., Metody optimizatsii i ikh prilozheniya. Ch. 2. Optimalnoe upravlenie, Nauka, Novosibirsk, 1990, 151 pp. | MR

[7] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR

[8] Terletskii V. A., “Obobschennoe reshenie odnomernykh polulineinykh giperbolicheskikh sistem so smeshannymi usloviyami”, Izv. vuzov. Matematika, 2004, no. 12, 75–83 | MR

[9] Bukina A. V., “Suschestvovanie i edinstvennost obobschennogo resheniya odnoi integro-differentsialnoi sistemy”, Izv. IGU. Ser. matem., 2007, no. 1, 62–70