The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 43-52
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the first boundary problem for the following mixed-type equation of the second kind: $$ u_{xx}+yu_{yy}+au_y-b^2u=0 $$ in the domain $\{(x,y)\mid0, where $a,b,\alpha$, and $\beta$ are given real numbers, and $0, $b\geq0$, $\alpha>0$, $\beta>0$. Based on the completeness of the system of eigenfunctions of one-dimensional spectral problem we establish a uniqueness criterion. We construct a solution to the problem as the sum of the series in eigenfunctions.
Keywords:
Dirichlet problem, mixed-type equation, spectral method, uniqueness
Mots-clés : existence.
Mots-clés : existence.
@article{IVM_2009_11_a4,
author = {K. B. Sabitov and A. Kh. Suleimanova},
title = {The {Dirichlet} problem for a~mixed-type equation with characteristic degeneration in a~rectangular domain},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {43--52},
year = {2009},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a4/}
}
TY - JOUR AU - K. B. Sabitov AU - A. Kh. Suleimanova TI - The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 43 EP - 52 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2009_11_a4/ LA - ru ID - IVM_2009_11_a4 ER -
%0 Journal Article %A K. B. Sabitov %A A. Kh. Suleimanova %T The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 43-52 %N 11 %U http://geodesic.mathdoc.fr/item/IVM_2009_11_a4/ %G ru %F IVM_2009_11_a4
K. B. Sabitov; A. Kh. Suleimanova. The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 43-52. http://geodesic.mathdoc.fr/item/IVM_2009_11_a4/
[1] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matematika, 2007, no. 4, 45–53 | MR | Zbl
[2] Sokhadze R. I., “O pervoi kraevoi zadache dlya uravneniya smeshannogo tipa v pryamougolnike”, Differents. uravneniya, 19:1 (1983), 127–133 | MR
[3] Sabitov K. B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl
[4] Sabitov K. B., Uravneniya matematicheskoi fiziki, Vyssh. shkola, M., 2003, 255 pp.
[5] Beitmen G., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966, 296 pp.
[6] Vatson G. N., Teoriya besselevykh funktsii, T. 1, In. lit., M., 1949, 798 pp.