Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 24-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider a differentiable mapping of a $p$-dimensional affine space into the differentiable manifold $\mathfrak M_N$ of all centered $m$-planes in the $n$-dimensional Euclidean space. We pay the special attention to describing geometric images defined by the fundamental geometric object of a certain mapping.
Keywords:
Euclidean space, differentiable manifold, differentiable mapping, fundamental geometric object.
Mots-clés : affine space, Cauchy–Riemann conditions
Mots-clés : affine space, Cauchy–Riemann conditions
@article{IVM_2009_11_a3,
author = {E. T. Ivlev and E. A. Moldovanova},
title = {Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional {Euclidean} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {24--42},
publisher = {mathdoc},
number = {11},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/}
}
TY - JOUR AU - E. T. Ivlev AU - E. A. Moldovanova TI - Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 24 EP - 42 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/ LA - ru ID - IVM_2009_11_a3 ER -
%0 Journal Article %A E. T. Ivlev %A E. A. Moldovanova %T Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 24-42 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/ %G ru %F IVM_2009_11_a3
E. T. Ivlev; E. A. Moldovanova. Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 24-42. http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/