Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 24-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a differentiable mapping of a $p$-dimensional affine space into the differentiable manifold $\mathfrak M_N$ of all centered $m$-planes in the $n$-dimensional Euclidean space. We pay the special attention to describing geometric images defined by the fundamental geometric object of a certain mapping.
Keywords: Euclidean space, differentiable manifold, differentiable mapping, fundamental geometric object.
Mots-clés : affine space, Cauchy–Riemann conditions
@article{IVM_2009_11_a3,
     author = {E. T. Ivlev and E. A. Moldovanova},
     title = {Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional {Euclidean} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--42},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/}
}
TY  - JOUR
AU  - E. T. Ivlev
AU  - E. A. Moldovanova
TI  - Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 24
EP  - 42
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/
LA  - ru
ID  - IVM_2009_11_a3
ER  - 
%0 Journal Article
%A E. T. Ivlev
%A E. A. Moldovanova
%T Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 24-42
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/
%G ru
%F IVM_2009_11_a3
E. T. Ivlev; E. A. Moldovanova. Differentiable mappings of affine spaces into manifolds of $m$-planes in a~multidimensional Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 24-42. http://geodesic.mathdoc.fr/item/IVM_2009_11_a3/

[1] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki. Ser. Probl. geom., 9, 1979, 5–246 | MR | Zbl

[2] Laptev G. F., “K invariantnoi teorii differentsiruemykh otobrazhenii”, Tr. Geom. sem., 6, M., 1974, 37–42 | MR | Zbl

[3] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu prostranstvami”, Itogi nauki. Geometriya. 1963, Moskva, 1965, 65–107 | MR

[4] Pavlyuchenko Yu. V., Ryzhkov V. V., “Ob izgibanii tochechnykh sootvetstvii mezhdu prostranstvami”, Tr. Geom. sem., 2, M., 1969, 263–275 | Zbl

[5] Pavlyuchenko Yu. V., “O kharakteristicheskoi sisteme tochechnykh sootvetstvii”, Tr. Geom. sem., 3, M., 1971, 221–233

[6] Ryzhkov V. V., “Kharakteristicheskie napravleniya tochechnogo otobrazheniya $P_m $ v $P_n$”, Tr. Geom. sem., 3, M., 1971, 235–242

[7] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu prostranstvami”, Itogi nauki. Algebra. Topologiya. Geometriya. 1970, Moskva, 1971, 153–174 | MR | Zbl

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958, 678 pp. | MR

[9] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968, 648 pp. | MR

[10] Akivis M. A., “Fokalnye obrazy poverkhnosti ranga $r$”, Izv. vuzov. Matematika, 1957, no. 1, 9–19 | MR | Zbl

[11] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR

[12] Ivlev E. T., Tyrtyi-ool N. M., Brazevich M. V., “O nekotorykh geometricheskikh obrazakh mnogoobrazii par dvoistvennykh lineinykh podprostranstv v mnogomernom proektivnom prostranstve”, Matem. sb. (Tomsk), 1 (1974), 68–91 | MR

[13] Bakhvalov S. V., “Zamechaniya k metodu podvizhnogo trekhgrannika”, Matem. sb., 7(49):2 (1940), 321–326 | MR | Zbl