On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. An Abelian group $A$ in some class $X$ of Abelian groups is said to be $_CH$-definable in the class $X$ if for any group $B\in X$ the isomorphism $\mathrm{Hom}(C,A)\cong\mathrm{Hom}(C,B)$ implies that $A\cong B$. If every group in $X$ is $_CH$-definable in $X$, then the class $X$ is called a $_CH$-class. In this paper we study conditions that make a class of completely decomposable torsion-free Abelian groups a $_CH$-class, where $C$ is a vector group.
Keywords: completely decomposable torsion-free Abelian group, vector Abelian group, group of homomorphisms, definability of Abelian groups.
@article{IVM_2009_11_a2,
     author = {T. A. Beregovaya},
     title = {On definability of completely decomposable torsion-free {Abelian} groups by certain groups of homomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--23},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/}
}
TY  - JOUR
AU  - T. A. Beregovaya
TI  - On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 20
EP  - 23
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/
LA  - ru
ID  - IVM_2009_11_a2
ER  - 
%0 Journal Article
%A T. A. Beregovaya
%T On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 20-23
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/
%G ru
%F IVM_2009_11_a2
T. A. Beregovaya. On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 20-23. http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/

[1] Fuchs L., “Recent results and problems on Abelian groups”, Topics in Abelian groups, Chicago, 1963, 9–40 | MR

[2] Hill P., “Two problems of L. Fuchs concerning $\mathrm{Tor}$ and $\mathrm{Hom}$”, J. Algebra, 19:3 (1971), 379–383 | DOI | MR | Zbl

[3] Sebeldin A. M., “O gruppakh gomomorfizmov abelevykh grupp bez krucheniya”, Gruppy i moduli, 1976, 70–77

[4] Beregovaya T. A., Sebeldin A. M., “Opredelyaemost vpolne razlozhimykh abelevykh grupp bez krucheniya gruppami gomomorfizmov”, Matem. zametki, 73:5 (2003), 643–648 | MR | Zbl

[5] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1977, 335 pp.

[6] Beregovaya T. A., “Opredelyaemost vpolne razlozhimykh abelevykh grupp bez krucheniya konechnogo ranga gruppami gomomorfizmov”, Matematika v obrazovanii: 200 let vysshemu matematicheskomu obrazovaniyu Rossii, Sb. statei, Cheboksary, 2005, 197–201

[7] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977, 416 pp.