On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 20-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C$ be an Abelian group. An Abelian group $A$ in some class $X$ of Abelian groups is said to be $_CH$-definable in the class $X$ if for any group $B\in X$ the isomorphism $\mathrm{Hom}(C,A)\cong\mathrm{Hom}(C,B)$ implies that $A\cong B$. If every group in $X$ is $_CH$-definable in $X$, then the class $X$ is called a $_CH$-class. In this paper we study conditions that make a class of completely decomposable torsion-free Abelian groups a $_CH$-class, where $C$ is a vector group.
Keywords:
completely decomposable torsion-free Abelian group, vector Abelian group, group of homomorphisms, definability of Abelian groups.
@article{IVM_2009_11_a2,
author = {T. A. Beregovaya},
title = {On definability of completely decomposable torsion-free {Abelian} groups by certain groups of homomorphisms},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {20--23},
publisher = {mathdoc},
number = {11},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/}
}
TY - JOUR AU - T. A. Beregovaya TI - On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 20 EP - 23 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/ LA - ru ID - IVM_2009_11_a2 ER -
%0 Journal Article %A T. A. Beregovaya %T On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 20-23 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/ %G ru %F IVM_2009_11_a2
T. A. Beregovaya. On definability of completely decomposable torsion-free Abelian groups by certain groups of homomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 20-23. http://geodesic.mathdoc.fr/item/IVM_2009_11_a2/