Mapping of a~half-plane onto a~polygon with infinitely many vertices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 76-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize the Schwarz–Christoffel formula for a conformal mapping of a half-plane onto a polygon for the case when the number of vertices of a certain polygon is infinite. We assume that the interior angles of the polygon (at unknown vertices) and points of the real axis that are images of the unknown vertices under the mentioned mapping are given.
Keywords: Schwarz–Christoffel integral, inverse problem, exponent of convergence.
@article{IVM_2009_10_a9,
     author = {R. B. Salimov and P. L. Shabalin},
     title = {Mapping of a~half-plane onto a~polygon with infinitely many vertices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--80},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a9/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - P. L. Shabalin
TI  - Mapping of a~half-plane onto a~polygon with infinitely many vertices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 76
EP  - 80
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a9/
LA  - ru
ID  - IVM_2009_10_a9
ER  - 
%0 Journal Article
%A R. B. Salimov
%A P. L. Shabalin
%T Mapping of a~half-plane onto a~polygon with infinitely many vertices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 76-80
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a9/
%G ru
%F IVM_2009_10_a9
R. B. Salimov; P. L. Shabalin. Mapping of a~half-plane onto a~polygon with infinitely many vertices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 76-80. http://geodesic.mathdoc.fr/item/IVM_2009_10_a9/

[1] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[2] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-va, Kazan, 2005, 298 pp.

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl