$C^*$-algebras generated by semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 68-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study $C^*$-algebras generated by a commuting family of isometric operators. Such algebras naturally generalize the Toeplitz algebra. We investigate $*$-automorphisms and ideals of $C^*$-algebras generated by semigroups.
Keywords: $C^*$-algebra, semigroup.
@article{IVM_2009_10_a7,
     author = {S. A. Grigoryan and A. F. Salakhutdinov},
     title = {$C^*$-algebras generated by semigroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--71},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a7/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. F. Salakhutdinov
TI  - $C^*$-algebras generated by semigroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 68
EP  - 71
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a7/
LA  - ru
ID  - IVM_2009_10_a7
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. F. Salakhutdinov
%T $C^*$-algebras generated by semigroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 68-71
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a7/
%G ru
%F IVM_2009_10_a7
S. A. Grigoryan; A. F. Salakhutdinov. $C^*$-algebras generated by semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 68-71. http://geodesic.mathdoc.fr/item/IVM_2009_10_a7/

[1] Adji S., Raeburn I., “The ideal structure of Toeplitz algebras”, Integr. Equat. Oper. Theory, 48 (2004), 281–293 | DOI | MR | Zbl

[2] Davidson K. R., Popescu G., “Noncommutative disk algebras for semigroups”, Canad. J. Math., 50:2 (1998), 290–311 | MR | Zbl

[3] Douglas R. G., “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128 (1972), 143–152 | DOI | MR

[4] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, New York, 1979, 416 pp. | MR | Zbl

[5] Jang S. Y., “Generalized Toeplitz algebra of a certain non-amenable semigroup”, Bull. Korean Math. Soc., 43:2 (2006), 333–341 | MR