Solving the maximum problem for the terminal norm of a~linear control system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the maximization problem for the terminal norm of a linear control system. We seek for the extremal controls and improve them. Based on a sufficient optimality condition, we construct procedures that use the differentiability of the support function of the set of attainability.
Keywords: optimal control, maximum norm problem, improvement of extremal processes.
@article{IVM_2009_10_a6,
     author = {N. S. Akhmedzhanova and S. N. Ushakova},
     title = {Solving the maximum problem for the terminal norm of a~linear control system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a6/}
}
TY  - JOUR
AU  - N. S. Akhmedzhanova
AU  - S. N. Ushakova
TI  - Solving the maximum problem for the terminal norm of a~linear control system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 63
EP  - 67
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a6/
LA  - ru
ID  - IVM_2009_10_a6
ER  - 
%0 Journal Article
%A N. S. Akhmedzhanova
%A S. N. Ushakova
%T Solving the maximum problem for the terminal norm of a~linear control system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 63-67
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a6/
%G ru
%F IVM_2009_10_a6
N. S. Akhmedzhanova; S. N. Ushakova. Solving the maximum problem for the terminal norm of a~linear control system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 63-67. http://geodesic.mathdoc.fr/item/IVM_2009_10_a6/

[1] Aleksandrov V. V., “O nakoplenii vozmuschenii v lineinykh sistemakh po dvum koordinatam”, Vestn. MGU. Ser. matem., mekhan., 1968, no. 3, 67–76 | Zbl

[2] Tkachev A. M., “Geometricheskii metod resheniya zadachi maksimizatsii normy vektora sostoyaniya sistemy na konechnom intervale upravleniya”, PMM, 54:6 (1990), 1036–1039 | MR | Zbl

[3] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S. i dr., Optimalnoe upravlenie dvizheniem, Fizmatlit, M., 2005, 376 pp.

[4] Gabasov R., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo Belorus. un-ta, Minsk, 1973, 248 pp. | MR

[5] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[6] Enkhbat R., “On some theory, methods and algorithms for concave programming”, Optimization and Optimal Control, World Scientific Publishing Co., 2003, 79–102 | MR | Zbl

[7] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR

[8] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 2:6 (1962), 1132–1139 | MR | Zbl