On the homology groups of arrangements of complex planes of codimension two
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the study of two-dimensional compact toric varieties, there naturally appears a set of coordinate planes of codimension two $Z=\cup_{1|i-j|$ in $\mathbb C^d$. Based on the Alexander–Pontryagin duality theory, we construct a cycle that is dual to the generator of the highest dimensional nontrivial homology group of the complement in $\mathbb C^d$ of the set of planes $Z$. We explicitly describe cycles that generate groups $H_{d+2}(\mathbb C^d\setminus Z)$ and $H_{d-3}(\overline Z)$, where $\overline Z=Z\cup\{\infty\}$.
Keywords: toric varieties
Mots-clés : plane arrangements.
@article{IVM_2009_10_a3,
     author = {A. V. Kazanova and Yu. V. Eliyashev},
     title = {On the homology groups of arrangements of complex planes of codimension two},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--39},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a3/}
}
TY  - JOUR
AU  - A. V. Kazanova
AU  - Yu. V. Eliyashev
TI  - On the homology groups of arrangements of complex planes of codimension two
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 33
EP  - 39
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a3/
LA  - ru
ID  - IVM_2009_10_a3
ER  - 
%0 Journal Article
%A A. V. Kazanova
%A Yu. V. Eliyashev
%T On the homology groups of arrangements of complex planes of codimension two
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 33-39
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a3/
%G ru
%F IVM_2009_10_a3
A. V. Kazanova; Yu. V. Eliyashev. On the homology groups of arrangements of complex planes of codimension two. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 33-39. http://geodesic.mathdoc.fr/item/IVM_2009_10_a3/

[1] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979, 368 pp.

[2] Tsikh A. K., Mnogomernye vychety i ikh primeneniya, Nauka, Novosibirsk, 1988, 240 pp. | MR | Zbl

[3] Kirwan F., Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Princeton, 1984, 210 pp. | MR | Zbl

[4] Cox D. A., “The homogeneous coordinate ring of toric variety”, J. Alg. Geom., 4:1 (1995), 17–50 | MR | Zbl

[5] Cox D. A., “Recent developments in toric geometry”, Proc. Sympos. Pure Math. Amer. Math. Soc., 62 (1997), 389–436 | MR | Zbl

[6] Tsikh A. K., “Toriska residyer”, Proc. Conf. “Nordan 3”, Stockholm, 1999, 16

[7] Kytmanov A. A., “Ob analoge formy Fubini–Shtudi dlya dvumernykh toricheskikh mnogoobrazii”, Sib. matem. zhurn., 44:2 (2003), 358–371 | MR | Zbl

[8] Shchuplev A., Tsikh A. K., Yger A., “Residual kernels with singularities on coordinate planes”, Proc. Steklov Institute of Math., 253, 2006, 256–274 | MR

[9] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR

[10] Batyrev V. V., “Quantum cohomology ring of toric manifolds”, J. Geom. Algebraic d'Orsay, 218 (1993), 9–34 | MR | Zbl