A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give sufficient conditions for solvability by quadratures of a matrix Bernoulli equation whose parameters are defined in the adjoint matrix representation of simple three-dimensional Lie algebras over a field of real numbers.
Keywords: differential equation, Lie algebra.
Mots-clés : matrix equation
@article{IVM_2009_10_a2,
     author = {V. P. Derevenskii},
     title = {A matrix {Bernoulli} equation in the adjoint matrix representation of simple three-dimensional {Lie} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--32},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/}
}
TY  - JOUR
AU  - V. P. Derevenskii
TI  - A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 23
EP  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/
LA  - ru
ID  - IVM_2009_10_a2
ER  - 
%0 Journal Article
%A V. P. Derevenskii
%T A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 23-32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/
%G ru
%F IVM_2009_10_a2
V. P. Derevenskii. A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 23-32. http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/

[1] Derevenskii V. P., “Matrichnoe uravnenie Bernulli”, Izv. vuzov. Matematika, 2008, no. 2, 14–23 | MR

[2] Derevenskii V. P., “Uravnenie Bernulli. II”, Izv. vuzov. Matematika, 2008, no. 7, 3–10 | MR

[3] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, In. lit., M., 1947, 359 pp.

[4] Petrov A. Z., Prostranstva Einshteina, GIFML, M., 1961, 463 pp. | MR

[5] Derevenskii V. P., “Lineinye obyknovennye differentsialnye uravneniya tretego poryadka v prisoedinennom predstavlenii prostykh algebr Li”, Differents. uravneniya, 28:10 (1992), 1675–1683 | MR

[6] Derevenskii V. P., “Razreshimost v kvadraturakh matrichnykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 27:5 (1991), 901–904 | MR

[7] Derevenskii V. P., “Differentsirovanie trigonometricheskikh funktsii nad algebroi Li”, Tr. mezhdunarodn. konf. “Spektralnaya teoriya differentsialnykh operatorov”, T. II, Ufa, 2003, 192–197

[8] Derevenskii V. P., “Giperbolicheskie funktsii i nelineinye obyknovennye differentsialnye uravneniya nad banakhovoi algebroi”, Izv. vuzov. Matematika, 2006, no. 8, 7–18 | MR