Mots-clés : matrix equation
@article{IVM_2009_10_a2,
author = {V. P. Derevenskii},
title = {A matrix {Bernoulli} equation in the adjoint matrix representation of simple three-dimensional {Lie} algebras},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {23--32},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/}
}
TY - JOUR AU - V. P. Derevenskii TI - A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 23 EP - 32 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/ LA - ru ID - IVM_2009_10_a2 ER -
V. P. Derevenskii. A matrix Bernoulli equation in the adjoint matrix representation of simple three-dimensional Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 23-32. http://geodesic.mathdoc.fr/item/IVM_2009_10_a2/
[1] Derevenskii V. P., “Matrichnoe uravnenie Bernulli”, Izv. vuzov. Matematika, 2008, no. 2, 14–23 | MR
[2] Derevenskii V. P., “Uravnenie Bernulli. II”, Izv. vuzov. Matematika, 2008, no. 7, 3–10 | MR
[3] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, In. lit., M., 1947, 359 pp.
[4] Petrov A. Z., Prostranstva Einshteina, GIFML, M., 1961, 463 pp. | MR
[5] Derevenskii V. P., “Lineinye obyknovennye differentsialnye uravneniya tretego poryadka v prisoedinennom predstavlenii prostykh algebr Li”, Differents. uravneniya, 28:10 (1992), 1675–1683 | MR
[6] Derevenskii V. P., “Razreshimost v kvadraturakh matrichnykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 27:5 (1991), 901–904 | MR
[7] Derevenskii V. P., “Differentsirovanie trigonometricheskikh funktsii nad algebroi Li”, Tr. mezhdunarodn. konf. “Spektralnaya teoriya differentsialnykh operatorov”, T. II, Ufa, 2003, 192–197
[8] Derevenskii V. P., “Giperbolicheskie funktsii i nelineinye obyknovennye differentsialnye uravneniya nad banakhovoi algebroi”, Izv. vuzov. Matematika, 2006, no. 8, 7–18 | MR