Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 81-87
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider a family of regularization methods for linear operator equations with $B$-symmetric and $B$-positive operators. We establish convergence theorems for regularized solutions and their discrete approximations.
Keywords:
$B$-symmetric operator, $B$-positive operator, uniformly convex space, Efimov–Stechkin space, discretization, iterative process, subgradient, subdifferential.
@article{IVM_2009_10_a10,
author = {P. A. Chistyakov},
title = {Regularization of operator equations with $B$-symmetric and $B$-positive operators in {Banach} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {81--87},
publisher = {mathdoc},
number = {10},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/}
}
TY - JOUR AU - P. A. Chistyakov TI - Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 81 EP - 87 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/ LA - ru ID - IVM_2009_10_a10 ER -
%0 Journal Article %A P. A. Chistyakov %T Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 81-87 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/ %G ru %F IVM_2009_10_a10
P. A. Chistyakov. Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 81-87. http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/