Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 81-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a family of regularization methods for linear operator equations with $B$-symmetric and $B$-positive operators. We establish convergence theorems for regularized solutions and their discrete approximations.
Keywords: $B$-symmetric operator, $B$-positive operator, uniformly convex space, Efimov–Stechkin space, discretization, iterative process, subgradient, subdifferential.
@article{IVM_2009_10_a10,
     author = {P. A. Chistyakov},
     title = {Regularization of operator equations with $B$-symmetric and $B$-positive operators in {Banach} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--87},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/}
}
TY  - JOUR
AU  - P. A. Chistyakov
TI  - Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 81
EP  - 87
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/
LA  - ru
ID  - IVM_2009_10_a10
ER  - 
%0 Journal Article
%A P. A. Chistyakov
%T Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 81-87
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/
%G ru
%F IVM_2009_10_a10
P. A. Chistyakov. Regularization of operator equations with $B$-symmetric and $B$-positive operators in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 81-87. http://geodesic.mathdoc.fr/item/IVM_2009_10_a10/