Description of bilinear forms generated by indefinite vector measures
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a correlation function generated by a $J$-orthogonal indefinite measure, whose value belongs to the Krein space.
Keywords: space with indefinite metrics, projector, $J$-projector, measure.
@article{IVM_2008_9_a5,
     author = {M. S. Matveichuk},
     title = {Description of bilinear forms generated by indefinite vector measures},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--58},
     publisher = {mathdoc},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/}
}
TY  - JOUR
AU  - M. S. Matveichuk
TI  - Description of bilinear forms generated by indefinite vector measures
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 47
EP  - 58
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/
LA  - ru
ID  - IVM_2008_9_a5
ER  - 
%0 Journal Article
%A M. S. Matveichuk
%T Description of bilinear forms generated by indefinite vector measures
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 47-58
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/
%G ru
%F IVM_2008_9_a5
M. S. Matveichuk. Description of bilinear forms generated by indefinite vector measures. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 47-58. http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/

[1] Jajte R., Paszkiewicz A., “Vector measures on the closed subspaces of a Hilbert space”, Studia Math., LXIII (1978), 229–251 | MR

[2] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986, 352 pp. | MR

[3] Matvejchuk M. S., Ionova A. M., “Vector measure on the logic of $J$-projections of a Krein space”, Int. J. Theor. Phys., 44:12 (2005), 2193–2200 | DOI | MR

[4] Matveichuk M. S., “Mera na kvantovoi logike podprostranstv $J$-prostranstva”, Sib. matem. zhurn., 32 (1991), 101–112 | MR

[5] Ylinen K., “The structure of bounded bilinear form on products of $C^*$-algebras”, Proc. Amer. Math. Soc., 102:3 (1988), 599–602 | DOI | MR | Zbl