Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_9_a5, author = {M. S. Matveichuk}, title = {Description of bilinear forms generated by indefinite vector measures}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {47--58}, publisher = {mathdoc}, number = {9}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/} }
M. S. Matveichuk. Description of bilinear forms generated by indefinite vector measures. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 47-58. http://geodesic.mathdoc.fr/item/IVM_2008_9_a5/
[1] Jajte R., Paszkiewicz A., “Vector measures on the closed subspaces of a Hilbert space”, Studia Math., LXIII (1978), 229–251 | MR
[2] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986, 352 pp. | MR
[3] Matvejchuk M. S., Ionova A. M., “Vector measure on the logic of $J$-projections of a Krein space”, Int. J. Theor. Phys., 44:12 (2005), 2193–2200 | DOI | MR
[4] Matveichuk M. S., “Mera na kvantovoi logike podprostranstv $J$-prostranstva”, Sib. matem. zhurn., 32 (1991), 101–112 | MR
[5] Ylinen K., “The structure of bounded bilinear form on products of $C^*$-algebras”, Proc. Amer. Math. Soc., 102:3 (1988), 599–602 | DOI | MR | Zbl