Methods for solving the generalized Volterra integral equation of the first kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to exact and approximate methods (first of all, direct ones) for the solution of integro-operational equations. The most attention is paid to the theoretical substantiation of the collocation method for the solution of the mentioned equation within the general theory of approximate methods developed by L. V. Kantorovich.
Keywords: integro-operational equation, space of vector-valued functions, collocation method, iterative method.
@article{IVM_2008_9_a1,
     author = {A. F. Galimyanov and D. E. Saifullina},
     title = {Methods for solving the generalized {Volterra} integral equation of the first kind},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--18},
     publisher = {mathdoc},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a1/}
}
TY  - JOUR
AU  - A. F. Galimyanov
AU  - D. E. Saifullina
TI  - Methods for solving the generalized Volterra integral equation of the first kind
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 11
EP  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_9_a1/
LA  - ru
ID  - IVM_2008_9_a1
ER  - 
%0 Journal Article
%A A. F. Galimyanov
%A D. E. Saifullina
%T Methods for solving the generalized Volterra integral equation of the first kind
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 11-18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_9_a1/
%G ru
%F IVM_2008_9_a1
A. F. Galimyanov; D. E. Saifullina. Methods for solving the generalized Volterra integral equation of the first kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 11-18. http://geodesic.mathdoc.fr/item/IVM_2008_9_a1/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR

[2] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[3] Haverkamp R., “Approximationsfehler der Ableitungen von Interpolationspolynomen”, J. Approx. Theory, 30 (1980), 180–196 | DOI | MR | Zbl

[4] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M., 1949, 688 pp. | MR

[5] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.

[6] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[7] Gabdulkhaev B. G., “Nailuchshie priblizheniya reshenii operatornykh uravnenii i optimizatsiya vychislitelnykh metodov”, Yubileinyi sb. izbrannykh tr. chlenov Akademii nauk Respubliki Tatarstan. Otdelenie matematiki, mekhaniki i mashinovedeniya, Izd-vo Foliant, Kazan, 2002, 165–192