On a spline-projection method for ill-posed integrodifferential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the general linear boundary value problem for ill-posed integrodifferential equations of an arbitrarily fixed finite order. We theoretically substantiate one version of the general spline-projection method. In particular, the obtained general results allow us to deduce the convergence of the spline methods of collocation and subdomains.
Keywords: Sobolev space, integrodifferential equation, polynomial spline, projection method
Mots-clés : convergence.
@article{IVM_2008_9_a0,
     author = {Yu. R. Agachev},
     title = {On a spline-projection method for ill-posed integrodifferential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a0/}
}
TY  - JOUR
AU  - Yu. R. Agachev
TI  - On a spline-projection method for ill-posed integrodifferential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 3
EP  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_9_a0/
LA  - ru
ID  - IVM_2008_9_a0
ER  - 
%0 Journal Article
%A Yu. R. Agachev
%T On a spline-projection method for ill-posed integrodifferential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 3-10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_9_a0/
%G ru
%F IVM_2008_9_a0
Yu. R. Agachev. On a spline-projection method for ill-posed integrodifferential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2008_9_a0/

[1] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov, II”, Izv. vuzov. Matematika, 1968, no. 10, 21–29 | Zbl

[2] Agachev Yu. R., “Ob optimizatsii pryamykh metodov resheniya obyknovennykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Matematika, 2004, no. 8, 3–10 | MR | Zbl

[3] Agachev Yu. R., Leonov A. I., “Reshenie odnogo klassa integro-differentsialnykh uravnenii metodom mekhanicheskikh kvadratur”, Izv. vuzov. Matematika, 2005, no. 7, 3–7 | MR | Zbl

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[5] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[6] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975, 496 pp.

[7] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR

[8] Nikolskii S. M., Kurs matematicheskogo analiza, T. I, Nauka, M., 1973, 432 pp.

[9] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR