On the continuation of the solution of a homogeneous system of Maxwell equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on the continuation of a solution to a system of Maxwell equations, using its values on a part of the domain boundary.
Keywords: Maxwell equations, ill-posed problem, regular solution
Mots-clés : Carleman matrices.
@article{IVM_2008_8_a8,
     author = {E. N. Sattarov},
     title = {On the continuation of the solution of a homogeneous system of {Maxwell} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--83},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a8/}
}
TY  - JOUR
AU  - E. N. Sattarov
TI  - On the continuation of the solution of a homogeneous system of Maxwell equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 78
EP  - 83
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_8_a8/
LA  - ru
ID  - IVM_2008_8_a8
ER  - 
%0 Journal Article
%A E. N. Sattarov
%T On the continuation of the solution of a homogeneous system of Maxwell equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 78-83
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_8_a8/
%G ru
%F IVM_2008_8_a8
E. N. Sattarov. On the continuation of the solution of a homogeneous system of Maxwell equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 78-83. http://geodesic.mathdoc.fr/item/IVM_2008_8_a8/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962, 92 pp.

[2] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970, 336 pp. | MR | Zbl

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[5] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966, 671 pp.

[6] Aleksidze M. A., Fundamentalnye funktsii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991, 350 pp. | MR | Zbl

[7] Stratton J. A., Chu L. J., “Diffraction theory of electromagnetic waves”, Phys. Repav., 56 (1939), 99–107 | DOI

[8] Yarmukhamedov Sh., “Funktsiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 45:3 (2004), 702–719 | MR | Zbl