Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 43-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the connection between the Lie bracket on the tangent space of homogeneous periodic $\Phi$-spaces and operators of canonical affinor structures of these spaces. The obtained relations allow us to indicate several cases of integrability of the mentioned structures.
Keywords: homogeneous periodic $\Phi$-space, generalized symmetric space, integrability of affinor structure.
Mots-clés : affinor structure
@article{IVM_2008_8_a4,
     author = {Yu. D. Churbanov},
     title = {Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--57},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/}
}
TY  - JOUR
AU  - Yu. D. Churbanov
TI  - Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 43
EP  - 57
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/
LA  - ru
ID  - IVM_2008_8_a4
ER  - 
%0 Journal Article
%A Yu. D. Churbanov
%T Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 43-57
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/
%G ru
%F IVM_2008_8_a4
Yu. D. Churbanov. Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 43-57. http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/