Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 43-57
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the connection between the Lie bracket on the tangent space of homogeneous periodic $\Phi$-spaces and operators of canonical affinor structures of these spaces. The obtained relations allow us to indicate several cases of integrability of the mentioned structures.
Keywords:
homogeneous periodic $\Phi$-space, generalized symmetric space, integrability of affinor structure.
Mots-clés : affinor structure
Mots-clés : affinor structure
@article{IVM_2008_8_a4,
author = {Yu. D. Churbanov},
title = {Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {43--57},
publisher = {mathdoc},
number = {8},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/}
}
TY - JOUR AU - Yu. D. Churbanov TI - Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 43 EP - 57 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/ LA - ru ID - IVM_2008_8_a4 ER -
Yu. D. Churbanov. Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 43-57. http://geodesic.mathdoc.fr/item/IVM_2008_8_a4/