Modules and ideals of algebras of associative type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 25-34
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study some properties of associative-type algebras introduced in previous papers of the author. We show that a finite-dimensional algebra of associative type over a field of zero characteristic is homogeneously semisimple, if and only if a certain form defined by the trace form is nonsingular. We prove the total reducedness of modulus over semisimple algebras in a certain subclass of associative-type algebras. We also prove that any left homogeneous ideal of a semisimple algebra of associative type is generated by a homogeneous idempotent.
Keywords:
algebra of associative type, homogeneous semisimple algebra, modulus, ideal, homogeneous idempotent.
@article{IVM_2008_8_a2,
author = {N. A. Koreshkov},
title = {Modules and ideals of algebras of associative type},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {25--34},
publisher = {mathdoc},
number = {8},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a2/}
}
N. A. Koreshkov. Modules and ideals of algebras of associative type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 25-34. http://geodesic.mathdoc.fr/item/IVM_2008_8_a2/