On bounded solutions of difference inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the necessary and sufficient conditions for the uniqueness of a solution to a difference inclusion in the space of bilateral vector sequences. The proof of the main result is based on the spectral theory of linear relations (multivalued linear operators).
Keywords: linear relation, spectrum of a linear relation, difference inclusion, multiplication operator.
@article{IVM_2008_8_a1,
     author = {M. S. Bichegkuev},
     title = {On bounded solutions of difference inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--24},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a1/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - On bounded solutions of difference inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 16
EP  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_8_a1/
LA  - ru
ID  - IVM_2008_8_a1
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T On bounded solutions of difference inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 16-24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_8_a1/
%G ru
%F IVM_2008_8_a1
M. S. Bichegkuev. On bounded solutions of difference inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2008_8_a1/

[1] Bichegkuev M. S., “Ob oslablennoi zadache Koshi dlya lineinogo differentsialnogo vklyucheniya”, Matem. zametki, 79:4 (2006), 483–487 | MR | Zbl

[2] Bichegkuev M. S., “Integralnye operatory, porozhdennye operatorom vzveshennogo sdviga”, Matem. zametki, 59:3 (1996), 452–454 | MR | Zbl

[3] Baskakov A. G., Pastukhov A. I., “Spektralnyi analiz operatora vzveshennogo sdviga s neogranichennymi operatornymi koeffitsientami”, Sib. matem. zhurn., 42:6 (2001), 1231–1243 | MR | Zbl

[4] Cross R., Multivalued linear operators, M. Dekker, New York, 1998, 335 pp. | Zbl

[5] Favini A., Yagi A., Degenerate differential equations in Banach spaces, M. Dekker, New York, 1998, 313 pp. | MR

[6] Baskakov A. G., Chernyshov K. I., “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[7] Gochberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, V. I, Birkhauser Verlag, Basel–Boston–Berlin, 1990, 468 pp. | MR