Linear connections on the framed distribution of hyperplane elements in a conformal space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of affine and normal connections induced by a complete normalization of mutually orthogonal distributions $\mathcal M$ and $\mathcal H$ in conformal space $C_n$, where $\mathcal M$ is a distribution of hyperplane elements, and $\mathcal H$ is a distribution of line elements. We consider invariant fields of pencils that are parallel with respect to the normal connection $\overset{0}{\nabla}{}^\bot$ along any curve belonging to the distribution $\mathcal M$.
Mots-clés : conformal space
Keywords: distribution of hyperplane elements, affine connection, normal connection.
@article{IVM_2008_7_a8,
     author = {A. M. Matveeva},
     title = {Linear connections on the framed distribution of hyperplane elements in a conformal space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--84},
     publisher = {mathdoc},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a8/}
}
TY  - JOUR
AU  - A. M. Matveeva
TI  - Linear connections on the framed distribution of hyperplane elements in a conformal space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 79
EP  - 84
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a8/
LA  - ru
ID  - IVM_2008_7_a8
ER  - 
%0 Journal Article
%A A. M. Matveeva
%T Linear connections on the framed distribution of hyperplane elements in a conformal space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 79-84
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a8/
%G ru
%F IVM_2008_7_a8
A. M. Matveeva. Linear connections on the framed distribution of hyperplane elements in a conformal space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 79-84. http://geodesic.mathdoc.fr/item/IVM_2008_7_a8/

[1] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR

[2] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Moskovsk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[3] Akivis M. A., “K konformno-differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53:1 (1961), 53–72 | MR | Zbl

[4] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, John Wiley Sons, New York, 1996, xiv + 383 pp. | MR | Zbl

[5] Bushmanova G. V., Elementy konformnoi geometrii, Izd-vo Kazansk. un-ta, Kazan, 1972, 178 pp. | MR

[6] Stolyarov A. V., Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii i ego prilozheniya, Chuvashsk. gos. ped. in-t, Cheboksary, 2002, 204 pp. | MR

[7] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR

[8] Chakmazyan A. V., Normalnaya svyaznost v geometrii podmnogoobrazii, Armyansk. ped. in-t, Erevan, 1990, 116 pp. | MR | Zbl

[9] Stolyarov A. V., “Proektivno-differentsialnaya geometriya regulyarnogo giperpolosnogo raspredeleniya $m$-mernykh lineinykh elementov”, Itogi nauki i tekhn. Probl. geometrii, 7, VINITI, M., 1975, 117–151 | MR

[10] Chakmazyan A. V., “Dvoistvennaya normalizatsiya”, DAN Arm. SSR, 28:4 (1959), 151–157 | MR | Zbl