The dual geometry of the Cartan distribution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of intrinsic geometry of a Cartan distribution $\mathcal M$ in projective space $\mathrm{P}_{2m}$. We essentially use the hyperband distribution $\mathcal H$ in $\mathrm P_{2m}$ associated with $\mathcal M$. Using the duality theory, we construct, in the 4th differential neighborhood, a series of normalizations of $\mathcal M$. We also consider dual affine connections $\overset{1}{\nabla}$ and $\overset{2}{\nabla}$ induced by the dual normalization of the Cartan distribution $\mathcal M$.
Mots-clés : Cartan distribution
Keywords: dual normalization, affine connection.
@article{IVM_2008_7_a7,
     author = {N. A. Kuz'mina},
     title = {The dual geometry of the {Cartan} distribution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--78},
     publisher = {mathdoc},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a7/}
}
TY  - JOUR
AU  - N. A. Kuz'mina
TI  - The dual geometry of the Cartan distribution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 73
EP  - 78
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a7/
LA  - ru
ID  - IVM_2008_7_a7
ER  - 
%0 Journal Article
%A N. A. Kuz'mina
%T The dual geometry of the Cartan distribution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 73-78
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a7/
%G ru
%F IVM_2008_7_a7
N. A. Kuz'mina. The dual geometry of the Cartan distribution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2008_7_a7/

[1] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp.

[2] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Moskovsk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR

[4] Laptev G. F., Ostianu N. M., “Raspredeleniya $n$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti, I”, Tr. geom. seminara, 3, In-t nauchn. inform. AN SSSR, 1971, 49–94 | MR

[5] Cartan E., “Sur les variétés de courbure constante d'un espace euclidien ou non-euclidien”, Bull. Soc. Math. France, 47 (1919), 125–160 | MR

[6] Cartan E., “Sur les variétés de courbure constante d'un espace euclidien ou non-euclidien”, Bull. Soc. Math. France, 48 (1920), 132–208 | MR | Zbl

[7] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Chuvashsk. gos. ped. in-t, Cheboksary, 1994, 290 pp. | Zbl

[8] Vagner V. V., “Teoriya polya lokalnykh giperpolos”, Tr. semin. po vektorn. i tenzorn. analizu, 8, 1950, 197–272 | MR | Zbl