Sequential differentiation and its applications in optimal control problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the sequential approach, we define a certain generalization of the operator derivative. We establish the necessary extremum condition in terms of the sequential derivative. As examples we consider the optimal control problems for systems governed by partial nonlinear differential equations of several kinds.
Keywords: operator differentiation, sequential approach, optimality conditions.
@article{IVM_2008_7_a5,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Sequential differentiation and its applications in optimal control problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--56},
     publisher = {mathdoc},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Sequential differentiation and its applications in optimal control problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 45
EP  - 56
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/
LA  - ru
ID  - IVM_2008_7_a5
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Sequential differentiation and its applications in optimal control problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 45-56
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/
%G ru
%F IVM_2008_7_a5
S. Ya. Serovaǐskiǐ. Sequential differentiation and its applications in optimal control problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 45-56. http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/

[1] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[2] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | Zbl

[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 431 pp. | MR

[4] Serovajsky S. Ya., “Calculation of functional gradients and extended differentiation of operators”, J. of inverse and ill-posed problems, 13:4 (2005), 383–396 | DOI | MR | Zbl

[5] Serovaiskii S. Ya., “Sekventsialnye proizvodnye operatorov i ikh prilozheniya v negladkikh zadachakh optimalnogo upravleniya”, Izv. vuzov. Matematika, 2006, no. 12, 75–87 | MR

[6] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976, 311 pp. | MR

[7] Serovaiskii S. Ya., “Priblizhennoe reshenie zadachi optimalnogo upravleniya dlya singulyarnogo uravneniya ellipticheskogo tipa s negladkoi nelineinostyu”, Izv. vuzov. Matematika, 2004, no. 1, 80–86 | MR

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp.

[9] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Nauk. Dumka, Kiev, 1988, 284 pp. | MR

[10] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989, 280 pp. | MR | Zbl

[11] Maurer H., Mittelmann H., “Optimization techniques for solving elliptic control problems with control and state constraints. Pt. 1: Boundary control”, Comput. Optimiz. Appl., 16:1 (2000), 29–55 | DOI | MR | Zbl

[12] Slawing T., “Shape optimization for semilinear elliptic equations based on a embedding domain method”, Appl. Math. Optim., 49:2 (2004), 183–199 | MR

[13] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[14] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.

[15] Serovaiskii S. Ya., “Optimalnoe upravlenie dlya uravnenii ellipticheskogo tipa s negladkoi nelineinostyu”, Differents. uravn., 39:4 (2003), 1420–1424 | MR

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[17] Barbu V., “Necessary conditions for distributed control problems governed by parabolic variational inequalities”, SIAM J. Contr. Optim., 19:1 (1981), 64–68 | DOI | MR

[18] Serovaiskii S. Ya., “Metod regulyarizatsii v zadache optimalnogo upravleniya nelineinoi giperbolicheskoi sistemoi”, Differents. uravn., 28:12 (1992), 2188–2190 | MR

[19] Suryanarayana M. B., “Necessary conditions for optimal problems with hyperbolic partial differential equations”, SIAM J. Contr., 11:1 (1973), 130–147 | DOI | MR | Zbl

[20] Tiba D., “Optimal control for second order semilinear hyperbolic equations”, Contr. Theory Adv. Techn., 3:1 (1987), 33–46 | MR

[21] Ha J., Nakagiri S., “Optimal control problem for nonlinear hyperbolic distributed parameter systems with damping terms”, Funct. Equat., 47:1 (2004), 1–23 | MR | Zbl