Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_7_a5, author = {S. Ya. Serovaǐskiǐ}, title = {Sequential differentiation and its applications in optimal control problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--56}, publisher = {mathdoc}, number = {7}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/} }
S. Ya. Serovaǐskiǐ. Sequential differentiation and its applications in optimal control problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 45-56. http://geodesic.mathdoc.fr/item/IVM_2008_7_a5/
[1] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR
[2] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | Zbl
[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 431 pp. | MR
[4] Serovajsky S. Ya., “Calculation of functional gradients and extended differentiation of operators”, J. of inverse and ill-posed problems, 13:4 (2005), 383–396 | DOI | MR | Zbl
[5] Serovaiskii S. Ya., “Sekventsialnye proizvodnye operatorov i ikh prilozheniya v negladkikh zadachakh optimalnogo upravleniya”, Izv. vuzov. Matematika, 2006, no. 12, 75–87 | MR
[6] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976, 311 pp. | MR
[7] Serovaiskii S. Ya., “Priblizhennoe reshenie zadachi optimalnogo upravleniya dlya singulyarnogo uravneniya ellipticheskogo tipa s negladkoi nelineinostyu”, Izv. vuzov. Matematika, 2004, no. 1, 80–86 | MR
[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp.
[9] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Nauk. Dumka, Kiev, 1988, 284 pp. | MR
[10] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989, 280 pp. | MR | Zbl
[11] Maurer H., Mittelmann H., “Optimization techniques for solving elliptic control problems with control and state constraints. Pt. 1: Boundary control”, Comput. Optimiz. Appl., 16:1 (2000), 29–55 | DOI | MR | Zbl
[12] Slawing T., “Shape optimization for semilinear elliptic equations based on a embedding domain method”, Appl. Math. Optim., 49:2 (2004), 183–199 | MR
[13] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR
[14] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.
[15] Serovaiskii S. Ya., “Optimalnoe upravlenie dlya uravnenii ellipticheskogo tipa s negladkoi nelineinostyu”, Differents. uravn., 39:4 (2003), 1420–1424 | MR
[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl
[17] Barbu V., “Necessary conditions for distributed control problems governed by parabolic variational inequalities”, SIAM J. Contr. Optim., 19:1 (1981), 64–68 | DOI | MR
[18] Serovaiskii S. Ya., “Metod regulyarizatsii v zadache optimalnogo upravleniya nelineinoi giperbolicheskoi sistemoi”, Differents. uravn., 28:12 (1992), 2188–2190 | MR
[19] Suryanarayana M. B., “Necessary conditions for optimal problems with hyperbolic partial differential equations”, SIAM J. Contr., 11:1 (1973), 130–147 | DOI | MR | Zbl
[20] Tiba D., “Optimal control for second order semilinear hyperbolic equations”, Contr. Theory Adv. Techn., 3:1 (1987), 33–46 | MR
[21] Ha J., Nakagiri S., “Optimal control problem for nonlinear hyperbolic distributed parameter systems with damping terms”, Funct. Equat., 47:1 (2004), 1–23 | MR | Zbl