The manifold of non-degenerate affinor fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the quotient set of the set of nondegenerate affinor fields with respect to the action of the group of nowhere vanishing functions. This set is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection).
Mots-clés :
Lie group, Cartan connection.
Keywords: Lie algebra, linear connection
Keywords: Lie algebra, linear connection
@article{IVM_2008_7_a4,
author = {E. M. Romanova},
title = {The manifold of non-degenerate affinor fields},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {39--44},
year = {2008},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/}
}
E. M. Romanova. The manifold of non-degenerate affinor fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44. http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/
[1] Postnikov M. M., Rimanova geometriya. Semestr V, Faktorial, M., 1998, 496 pp.
[2] Burbaki N., Gruppy i algebry Li. Algebry Li, svobodnye algebly Li i gruppy Li, Mir, M., 1976, 496 pp. | MR
[3] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975, 220 pp. | MR
[4] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR