The manifold of non-degenerate affinor fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the quotient set of the set of nondegenerate affinor fields with respect to the action of the group of nowhere vanishing functions. This set is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection).
Mots-clés : Lie group, Cartan connection.
Keywords: Lie algebra, linear connection
@article{IVM_2008_7_a4,
     author = {E. M. Romanova},
     title = {The manifold of non-degenerate affinor fields},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--44},
     publisher = {mathdoc},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/}
}
TY  - JOUR
AU  - E. M. Romanova
TI  - The manifold of non-degenerate affinor fields
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 39
EP  - 44
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/
LA  - ru
ID  - IVM_2008_7_a4
ER  - 
%0 Journal Article
%A E. M. Romanova
%T The manifold of non-degenerate affinor fields
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 39-44
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/
%G ru
%F IVM_2008_7_a4
E. M. Romanova. The manifold of non-degenerate affinor fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44. http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/

[1] Postnikov M. M., Rimanova geometriya. Semestr V, Faktorial, M., 1998, 496 pp.

[2] Burbaki N., Gruppy i algebry Li. Algebry Li, svobodnye algebly Li i gruppy Li, Mir, M., 1976, 496 pp. | MR

[3] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975, 220 pp. | MR

[4] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR