The manifold of non-degenerate affinor fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quotient set of the set of nondegenerate affinor fields with respect to the action of the group of nowhere vanishing functions. This set is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection).
Mots-clés : Lie group, Cartan connection.
Keywords: Lie algebra, linear connection
@article{IVM_2008_7_a4,
     author = {E. M. Romanova},
     title = {The manifold of non-degenerate affinor fields},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--44},
     year = {2008},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/}
}
TY  - JOUR
AU  - E. M. Romanova
TI  - The manifold of non-degenerate affinor fields
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 39
EP  - 44
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/
LA  - ru
ID  - IVM_2008_7_a4
ER  - 
%0 Journal Article
%A E. M. Romanova
%T The manifold of non-degenerate affinor fields
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 39-44
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/
%G ru
%F IVM_2008_7_a4
E. M. Romanova. The manifold of non-degenerate affinor fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 39-44. http://geodesic.mathdoc.fr/item/IVM_2008_7_a4/

[1] Postnikov M. M., Rimanova geometriya. Semestr V, Faktorial, M., 1998, 496 pp.

[2] Burbaki N., Gruppy i algebry Li. Algebry Li, svobodnye algebly Li i gruppy Li, Mir, M., 1976, 496 pp. | MR

[3] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975, 220 pp. | MR

[4] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR