$L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 11-18
Cet article a éte moissonné depuis la source Math-Net.Ru
We study Besicovitch-type spaces of generalized almost periodic functions. The main result is a theorem on representation of linear continuous functionals that is similar to the classical result of F. Riesz.
Keywords:
almost-periodic functions, linear continuous functionals.
Mots-clés : Besicovitch space
Mots-clés : Besicovitch space
@article{IVM_2008_7_a1,
author = {A. L. Kuz'mina},
title = {$L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {11--18},
year = {2008},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/}
}
A. L. Kuz'mina. $L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 11-18. http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/
[1] Levitan B. M., Pochti periodicheskie funktsii, GITTL, M., 1953, 396 pp.
[2] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965, 304 pp.
[3] Besicovitch A. S., Bohr H., “Almost periodicity and general trigonometric series”, Acta Math., 57 (1931), 203–292 | DOI | MR
[4] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1986, 368 pp. | MR
[5] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, In. lit., M., 1954, 499 pp.
[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR