$L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Besicovitch-type spaces of generalized almost periodic functions. The main result is a theorem on representation of linear continuous functionals that is similar to the classical result of F. Riesz.
Keywords: almost-periodic functions, linear continuous functionals.
Mots-clés : Besicovitch space
@article{IVM_2008_7_a1,
     author = {A. L. Kuz'mina},
     title = {$L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--18},
     publisher = {mathdoc},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/}
}
TY  - JOUR
AU  - A. L. Kuz'mina
TI  - $L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 11
EP  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/
LA  - ru
ID  - IVM_2008_7_a1
ER  - 
%0 Journal Article
%A A. L. Kuz'mina
%T $L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 11-18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/
%G ru
%F IVM_2008_7_a1
A. L. Kuz'mina. $L^p(AP)$ ($1\le p\le\infty$) spaces and their adjoint spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 11-18. http://geodesic.mathdoc.fr/item/IVM_2008_7_a1/

[1] Levitan B. M., Pochti periodicheskie funktsii, GITTL, M., 1953, 396 pp.

[2] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965, 304 pp.

[3] Besicovitch A. S., Bohr H., “Almost periodicity and general trigonometric series”, Acta Math., 57 (1931), 203–292 | DOI | MR

[4] Sadovnichii V. A., Teoriya operatorov, Izd-vo MGU, M., 1986, 368 pp. | MR

[5] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, In. lit., M., 1954, 499 pp.

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR