Bernoulli matrix equations. II.
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we find sufficient conditions for the solvability by quadratures of J. Bernoulli's equation defined over the set $M_2$ of square matrices of order 2. We consider the cases when such equations are stated in terms of bases of a two-dimensional abelian algebra and a three-dimensional solvable Lie algebra over $M_2$. We adduce an example of the third degree J. Bernoulli's equation over a commutative algebra.
Keywords:
differential equation, Lie algebra.
Mots-clés : matrix equation
Mots-clés : matrix equation
@article{IVM_2008_7_a0,
author = {V. P. Derevenskii},
title = {Bernoulli matrix {equations.~II.}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--10},
year = {2008},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_7_a0/}
}
V. P. Derevenskii. Bernoulli matrix equations. II.. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2008), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2008_7_a0/
[1] Derevenskii V. P., “Matrichnye uravneniya Bernulli, I”, Izv. vuzov. Matematika, 2008, no. 2, 14–24 | MR
[2] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969, 375 pp. | MR | Zbl
[3] Petrov A. Z., Prostranstva Einshteina, GIFML, M., 1961, 464 pp.
[4] Derevenskii V. P., “Matrichnye lineinye differentsialnye uravneniya vysshikh poryadkov”, Differents. uravneniya, 29:4 (1993), 711–714