A criterion for the uniform convergence of sinc-approximations on a segment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain a criterion for the uniform convergence inside the interval $(0,\pi)$ of values of E. T. Whittaker operators $$ L_n(f,x)=\sum_{k=0}^{n}\frac{\sin(nx-k\pi)}{nx-k\pi}f\biggl(\frac{k\pi}{n}\biggr) $$ for continuous functions. This criterion is similar to that of A. A. Privalov for the convergence of interpolation Lagrange–Chebyshev polynomials and trigonometric ones.
Keywords: cardinal function, sinc approximation, convergence; criterion of the uniform convergence, cardinal function, approximation
Mots-clés : Lagrange interpolation, interpolation process.
@article{IVM_2008_6_a6,
     author = {A. Yu. Trynin},
     title = {A criterion for the uniform convergence of sinc-approximations on a segment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--78},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_6_a6/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A criterion for the uniform convergence of sinc-approximations on a segment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 66
EP  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_6_a6/
LA  - ru
ID  - IVM_2008_6_a6
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A criterion for the uniform convergence of sinc-approximations on a segment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 66-78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_6_a6/
%G ru
%F IVM_2008_6_a6
A. Yu. Trynin. A criterion for the uniform convergence of sinc-approximations on a segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 66-78. http://geodesic.mathdoc.fr/item/IVM_2008_6_a6/

[1] Plana G., “Sur une nouvelle expression analytique des nombers Bernoulliens”, Academia di Torino, 25 (1820), 403–418

[2] Borel E., “Sur l'interpolation”, C. R. Acad. Sci. Paris, 124 (1897), 673–676 | Zbl

[3] Whittaker E. T., “On the functions which are represented by expansion of the interpolation theory”, Proc. Roy. Soc. Edinburgh, 35 (1915), 181–194

[4] Stenger F., “Approximations via the Whittaker cardinal function”, J. Approx. Theory, 17 (1976), 222–240 | DOI | MR | Zbl

[5] Zhuk A. S., Zhuk V. V., “Nekotorye ortogonalnosti v teorii priblizheniya”, Zap. nauchn. semin. POMI, 314, 2004, 83–123 | Zbl

[6] Stenger F., Numerical metods based on sinc and analytic functions, Springer-Verlag, N. Y., 1993, 565 pp. | Zbl

[7] Kotelnikov V. A., “O propusknoi sposobnosti “efira” i provoloki v elektrosvyazi”, Materialy k 1 Vsesoyuznomu s'ezdu po voprosam rekonstruktsii dela svyazi i razvitiya slabotochnoi promyshlennosti, Upravlenie svyazi RKKA, M., 1933

[8] Voss J. J., “A sampling theorem with nonuniform complex nodes”, J. Approx. Theory, 90 (1997), 235–254 | DOI | MR | Zbl

[9] Butzer P. L., Hinsen G., “Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples”, Signal Process, 17 (1989), 1–17 | DOI | MR

[10] Higgins J. R., “Sampling theorems and contour integral method”, Appl. Anal., 41 (1991), 155–169 | DOI | MR | Zbl

[11] Hinsen G., “Irregular sampling of bandlimited $L^p$-functions”, J. Approx. Theory, 72 (1993), 346–364 | DOI | MR | Zbl

[12] Seip K., “An irregular sampling theorem for functions bandlimited in a generalized sense”, SIAM J. Appl. Math., 47:5 (1987), 1112–1116 | DOI | MR | Zbl

[13] Higgins J. R., “A sampling theorem for irregulary spaced sample points”, IEEE Trans. Inform. Theory, 22 (1976), 621–622 | DOI | MR | Zbl

[14] Young R. M., An introduction to nonharmonic Fourier series, Academic Press, New York, 1980

[15] Kramer H. P., “A generalized sampling theorem”, J. Math. Phys., 38 (1959), 68–72 | Zbl

[16] Zayed A. I., Hinsen G., Butzer P. L., “On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm–Liouville problems”, SIAM J. Appl. Math., 50:3 (1990), 893–909 | DOI | MR | Zbl

[17] Stenger F., “An analytic function which is an approximate characteristic function”, SIAM J. Numer. Anal., 12 (1975), 239–254 | DOI | MR | Zbl

[18] Privalov A. A., “Kriterii ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Izv. vuzov. Matematika, 5, no. 1986, 49–59

[19] Privalov A. A., “O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Matem. zametki, 39:2 (1986), 228–244 | MR | Zbl

[20] Privalov A. A., Teoriya interpolirovaniya funktsii, Kn. 2, Izd-vo Saratovsk. un-ta, Saratov, 1990, S. 231–424.

[21] Privalov A. A., Izbrannye trudy, ed. S. B. Stechkin, Izd-vo Saratovsk. un-ta, Saratov, 1997, 288 pp. | Zbl

[22] Trynin A. Yu., O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, Dep. v VINITI 26.04.91, No 1763-V91, Saratovskii un-t, 1991, 32 pp.

[23] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | Zbl

[24] Trynin A. Yu., “Ob otsenke approksimatsii analiticheskikh funktsii odnim interpolyatsionnym operatorom”, Materily 7-i Kazansk. letnei nauchn. shkoly-konferentsii (Kazan, 17 iyunya–4 iyulya 2005 g.), 155

[25] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1964, 438 pp. | MR

[26] Nevai G. P., “Zamechaniya ob interpolirovanii”, Acta Math. Acad. Sci. Hung., 25:1–2 (1974), 123–144 | DOI | MR | Zbl

[27] Nevai G. P., “O skhodimosti Lagranzheva interpolirovaniya po uzlam Lagerra”, Publ. Math. Debrecen, 20 (1973), 235–239 | MR | Zbl

[28] Marcinkewicz J., “Quelques remarques sur l'interpolation”, Acta Litterarum as Scient. Szeged, 8 (1936), 127–130

[29] Lozinskii S. M., “On convergence and summability of Fourier series and interpolation processes”, Matem. sb., 14:3 (1944), 175–268

[30] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.

[31] Bernshtein S. N., Sobranie sochinenii. T. 4. Neskolko zamechanii ob interpolirovanii, M., 1952, S. 253–263.

[32] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zap. Leningrad. ped. in-ta, 166 (1958), 213–219 | MR