Small periodic solutions of nonlinear systems of differential equations with constant deviation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 56-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear system of differential equations in a general case with a singular matrix at the derivatives, with a vector deviation which depends on a parameter. We seek for a periodic solution to the system in the set of trigonometric series such that the sequences of their coefficients belong to the space $l_1$. We use the method, representing a space as a direct sum of subspaces, and the method of a fixed point of a nonlinear operator as the main investigation techniques. We reduce the question on the existence of a periodic solution to that of the solvability of an operator equation, whose principal part is defined in a finite-dimensional space.
Keywords: a vector form, an eigen element and an eigenvalue of an operator, a basis of a space, the projecting operator, linear functionals, a fixed point of an operator, the rank of a matrix.
@article{IVM_2008_6_a5,
     author = {M. T. Terekhin},
     title = {Small periodic solutions of nonlinear systems of differential equations with constant deviation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--65},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_6_a5/}
}
TY  - JOUR
AU  - M. T. Terekhin
TI  - Small periodic solutions of nonlinear systems of differential equations with constant deviation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 56
EP  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_6_a5/
LA  - ru
ID  - IVM_2008_6_a5
ER  - 
%0 Journal Article
%A M. T. Terekhin
%T Small periodic solutions of nonlinear systems of differential equations with constant deviation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 56-65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_6_a5/
%G ru
%F IVM_2008_6_a5
M. T. Terekhin. Small periodic solutions of nonlinear systems of differential equations with constant deviation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 56-65. http://geodesic.mathdoc.fr/item/IVM_2008_6_a5/

[1] Ryabov Yu. A., “Primenenie metoda malogo parametra dlya postroeniya reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, DAN SSSR, 133:2 (1960), 288–291 | MR | Zbl

[2] Rozhkov V. I., “Asimptotika periodicheskogo resheniya uravneniya neitralnogo tipa s malym zapazdyvaniem”, DAN SSSR, 180:5 (1968), 1041–1044 | MR | Zbl

[3] Rozhkov V. I., “Asimptoticheskoe razlozhenie po stepenyam zapazdyvaniya periodicheskogo resheniya uravneniya neitralnogo tipa s malym zapazdyvaniem”, Differents. uravneniya, 4:7 (1968), 1250–1257 | MR

[4] Ryabov Yu. A., Lika D. K., “O periodicheskikh resheniyakh differentsialnykh uravnenii neitralnogo tipa s malym zapazdyvaniem”, Tr. seminara po teorii differents. uravnenii s otklonyayuschimsya argumentom, 9, Un-t druzhby narodov im. Patrisa Lumumby, 1975, 146–153 | MR

[5] Dolgii Yu. F., Kolupaeva O. S., “Bifurkatsiya Khopfa dlya differentsialnykh uravnenii s malym zapazdyvaniem”, Vestn. Permsk. gos. tekhn. un-ta. Funktsionalno-differents. uravneniya, Perm, 1997, 84–90 | MR

[6] Tolstov G. P., Ryady Fure, Fizmatgiz, M., 1980, 390 pp. | MR | Zbl