Existence and basis property of eigen and associated elements of linear operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the study described earlier in No. 5, 2006, of Russian Mathematics (Iz. VUZ). We establish conditions, providing the asymptotics mentioned in the cited paper. We prove the basis property of eigen functions and associated ones in linear problems for differential equations with deviating arguments.
Keywords: the asymptotics of eigenvalues, the basis property, eigen and associated elements.
@article{IVM_2008_6_a4,
     author = {V. S. Mokeichev},
     title = {Existence and basis property of eigen and associated elements of linear operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--55},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_6_a4/}
}
TY  - JOUR
AU  - V. S. Mokeichev
TI  - Existence and basis property of eigen and associated elements of linear operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 43
EP  - 55
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_6_a4/
LA  - ru
ID  - IVM_2008_6_a4
ER  - 
%0 Journal Article
%A V. S. Mokeichev
%T Existence and basis property of eigen and associated elements of linear operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 43-55
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_6_a4/
%G ru
%F IVM_2008_6_a4
V. S. Mokeichev. Existence and basis property of eigen and associated elements of linear operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 43-55. http://geodesic.mathdoc.fr/item/IVM_2008_6_a4/

[1] Mokeichev V. S., “Dokazatelstvo bazisnosti s ispolzovaniem tolko asimptotiki sobstvennykh i prisoedinennykh elementov”, Izv. vuzov. Matematika, 2006, no. 5, 48–54 | MR

[2] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986, 260 pp. | MR | Zbl

[3] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp.

[4] Mokeichev V. S., Differentsialnye uravneniya s otklonyayuschimisya argumentami, Izd-vo Kazansk. un-ta, Kazan, 1985, 222 pp.

[5] Mokeichev V. S., “Bazisnost v smysle Rissa sobstvennykh i prisoedinennykh elementov”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 12-i Sarat. zimnei shkoly, Saratov, 2004, 124–125 | MR