Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 29-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of physical structures the classification of metric functions (both on a single set and on two ones) plays an important role. A metric function represents a two-point invariant of a certain local Lie transformation group. Moreover, one can uniquely restore this group with the help of the invariance condition. According to this theorem, in order to find all metric functions, it suffices to construct the complete classification of local Lie transformation groups. In this paper we classify Lie algebras of simply transitive local Lie groups of local transformations of a four-dimensional space, and then we define metric functions. The obtained results admit application in physics, in particular, in thermodynamics.
Keywords: a Lie algebra, a simply transitive transformation group, basis operators, a metric function, a physical structure.
@article{IVM_2008_6_a3,
     author = {V. A. Kyrov},
     title = {Classification of four-dimensional transitive local {Lie} groups of transformations of the space $R\sp 4$ and their two-point invariants},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--42},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_6_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 29
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_6_a3/
LA  - ru
ID  - IVM_2008_6_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 29-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_6_a3/
%G ru
%F IVM_2008_6_a3
V. A. Kyrov. Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 29-42. http://geodesic.mathdoc.fr/item/IVM_2008_6_a3/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp.

[2] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 496 pp.

[3] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, Gorno-Altaisk, Barnaul, 2003, 203 pp.

[4] Mikhailichenko G. G., Polimetricheskie geometrii, NGU, Novosibirsk, 2001, 143 pp.

[5] Mikhailichenko G. G., “Trekhmernye algebry Li lokalno tranzitivnykh preobrazovanii prostranstva”, Izv. vuzov. Matematika, 1997, no. 9, 41–48 | MR | Zbl

[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp.

[7] Mikhailichenko G. G., “Prosteishie polimetricheskie geometrii”, Dokl. RAN, 348:1 (1996), 22–24 | MR | Zbl

[8] Mikhailichenko G. G., “Prosteishie polimetricheskie geometrii, I”, Sib. matem. zhurn., 39:2 (1998), 377–395 | MR

[9] Mikhailichenko G. G., “Nekotorye zamechaniya k klassifikatsii Li grupp preobrazovanii”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1986, no. 5, 98