Computation of the eigenvalues of a discrete selfadjoint operator perturbed by a bounded operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the method of regularized traces which calculates eigenvalues of a perturbed discrete operator for the case of an arbitrary multiplicity of eigenvalues of the unperturbed operator. We obtain a system of equations, enabling one to calculate eigenvalues of the perturbed operator with large ordinal numbers. As an example, we calculate eigenvalues of a perturbed Laplace operator in a rectangle.
Keywords: a discrete self-adjoint operator, a separable Hilbert space, eigenvalues and eigenfunctions of an operator, a regularized trace, errors in the perturbation theory.
@article{IVM_2008_6_a1,
     author = {I. I. Kinzina},
     title = {Computation of the eigenvalues of a discrete selfadjoint operator perturbed by a bounded operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--24},
     publisher = {mathdoc},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_6_a1/}
}
TY  - JOUR
AU  - I. I. Kinzina
TI  - Computation of the eigenvalues of a discrete selfadjoint operator perturbed by a bounded operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 16
EP  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_6_a1/
LA  - ru
ID  - IVM_2008_6_a1
ER  - 
%0 Journal Article
%A I. I. Kinzina
%T Computation of the eigenvalues of a discrete selfadjoint operator perturbed by a bounded operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 16-24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_6_a1/
%G ru
%F IVM_2008_6_a1
I. I. Kinzina. Computation of the eigenvalues of a discrete selfadjoint operator perturbed by a bounded operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2008), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2008_6_a1/

[1] Sadovnichii V. A., Podolskii V. E., “O vychislenii pervykh sobstvennykh znachenii operatora Shturma–Liuvillya”, Dokl. RAN, 346:2 (1996), 162–164 | MR

[2] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh vidov differentsialnykh uravnenii vtorogo poryadka”, UMN, 7:6 (1952), 3–96

[3] Dikii L. A., “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma–Liuvillya”, DAN SSSR, 116:1 (1957), 12–14 | MR

[4] Shkarin S. A., “O sposobe Gelfanda–Dikogo vychisleniya pervykh sobstvennykh chisel operatora Shturma–Liuvillya”, Vestnik Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1996, no. 1, 39–44 | MR

[5] Sadovnichii V. A., Dubrovskii V. V., “Zamechanie ob odnom novom metode vychisleniya sobstvennykh znachenii i sobstvennykh funktsii diskretnykh operatorov”, Tr. seminara im. I. G. Petrovskogo, no. 17, MGU, M., 1994, 244–248 | MR

[6] Kadchenko S. I., “Novyi metod vychisleniya pervykh sobstvennykh chisel diskretnykh nesamosopryazhennykh operatorov”, Uravneniya sobolevskogo tipa, Chelyab. gos. un-t, Chelyabinsk, 2002, 42–59 | MR

[7] Sadovnichii V. A., Teoriya operatorov, Vyssh. shkola, M., 1999, 368 pp.