On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study an integral operator with involution. We solve the problem on the exact inversion of this operator, we obtain and study the integrodifferential system for the Fredholm resolvent and, finally, we prove the theorem on the equiconvergence of expansions in eigenfunctions and associated functions, in the ordinary trigonometric system.
Keywords: integral operator, resolvent, involution, eigenfunctions and associated functions, Fourier series.
@article{IVM_2008_5_a7,
     author = {A. P. Khromov and L. P. Kuvardina},
     title = {On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--76},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a7/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - L. P. Kuvardina
TI  - On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 67
EP  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a7/
LA  - ru
ID  - IVM_2008_5_a7
ER  - 
%0 Journal Article
%A A. P. Khromov
%A L. P. Kuvardina
%T On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 67-76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a7/
%G ru
%F IVM_2008_5_a7
A. P. Khromov; L. P. Kuvardina. On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 67-76. http://geodesic.mathdoc.fr/item/IVM_2008_5_a7/

[1] Babbage Ch., “An essay towards the calculus of functions”, Philosophical transactions of the Royal Society of London, 11 (1816), 179–226 | DOI

[2] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | MR | Zbl

[3] Dankl Ch. G., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR

[4] Platonov S. S., “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavodsk. gos. un-ta. Ser. matem., 2004, no. 11, 15–35 | MR

[5] Khromov A. P., “Ob analoge teoremy Zhordana–Dirikhle dlya razlozhenii po sobstvennym funktsiyam differentsialno-raznostnogo operatora s integralnym granichnym usloviem”, Dokl. RAN, 2004, no. 4, 80–87

[6] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–942 | MR | Zbl

[7] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl

[8] Kornev V. V., Khromov A. P., “Absolyutnaya skhodimost razlozhenii po sobstvennym funktsiyam integralnogo operatora s peremennym predelom integrirovaniya”, Izv. RAN. Ser. matem., 69:4 (2005), 59–74 | MR | Zbl

[9] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh funktsii integralnogo operatora s peremennym predelom integrirovaniya”, Matem. zametki, 76:1 (2004), 97–110 | MR

[10] Belousova L. P., “Teorema o ravnoskhodimosti spektralnykh razlozhenii dvukh integralnykh operatorov”, Sovremen. problemy teorii funktsii i ikh prilozh., Tez. dokl. 10-i Sartovsk. zimn. shkoly, 2000, 17

[11] Rapoport I. M., O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954, 287 pp. | MR

[12] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.