The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove an analog of the Luzin theorem on correction for the Sobolev-type spaces on an arbitrary metric space, whose measure satisfies the doubling condition. The correcting function belongs to the Hölder class and approximates a given function in the metrics of the initial space. Dimensions of exceptional sets are evaluated in terms of Hausdorff volumes and capacities.
Keywords: a metric space with a measure, Luzin approximation.
Mots-clés : Sobolev spaces
@article{IVM_2008_5_a6,
     author = {V. G. Krotov and M. A. Prokhorovich},
     title = {The {Luzin} approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--66},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a6/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - M. A. Prokhorovich
TI  - The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 55
EP  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a6/
LA  - ru
ID  - IVM_2008_5_a6
ER  - 
%0 Journal Article
%A V. G. Krotov
%A M. A. Prokhorovich
%T The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 55-66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a6/
%G ru
%F IVM_2008_5_a6
V. G. Krotov; M. A. Prokhorovich. The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 55-66. http://geodesic.mathdoc.fr/item/IVM_2008_5_a6/

[1] Federer H., “Surface area, II”, Trans. Amer. Math. Soc., 55 (1944), 438–456 | DOI | MR | Zbl

[2] Whitney H., “On totally differentiable and smooth functions”, Pacific J. Math., 1 (1951), 143–159 | MR | Zbl

[3] Calderón A. P., Zygmund A., “Local properties of solutions of elliptic partial differential equations”, Studia Math., 20 (1961), 171–225 | MR | Zbl

[4] Bagby T., Ziemer W. P., “Pointwise differentiablity and absolute continuity”, Trans. Amer. Math. Soc., 191 (1974), 129–148 | DOI | MR | Zbl

[5] Liu F.-C., “A Lusin type property of Sobolev functions”, Indiana Univ. Math. J., 26 (1977), 645–651 | DOI | MR | Zbl

[6] Michael J., Ziemer W. P., “A Lusin type approximation of Sobolev functions by smooth functions”, Contemp. Math., 42, 1985, 135–167 | MR | Zbl

[7] Swanson D., “Pointwise inequalities and approximation in fractional Sobolev spaces”, Studia Math., 149 (2002), 147–174 | DOI | MR | Zbl

[8] Bojarski B., Hajłasz P., Strzelecki P., “Improved $C^{k,\lambda}$-approximation of higher order Sobolev functions in norm and capacity”, Indiana Univ. Math. J., 51:3 (2002), 507–540 | DOI | MR | Zbl

[9] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[10] Hedberg L. I., Netrusov Yu., An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Memoirs of the Amer. Math. Soc., 882, 2007, vi + 97 pp. | MR | Zbl

[11] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[12] Calderon A. P., “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl

[13] Hajłasz P., Kinnunen J., “Hölder qasicontinuity of Sobolev functions on metric spaces”, Revista Mat. Iberoamericana, 14:3 (1998), 601–622 | Zbl

[14] Hu J., “A note on Hajłasz-Sobolev spaces on fractals”, J. Math. Anal. Appl., 280:1 (2003), 91–101 | DOI | MR | Zbl

[15] Yang D., “New characterization of Hajłasz-Sobolev spaces on metric spaces”, Science in China, Ser. 1, 46:5 (2003), 675–689 | DOI | Zbl

[16] Oskolkov K. I., “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl

[17] Kolyada V. I., “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25 (1999), 277–300 | DOI | MR | Zbl

[18] Coifman R. R., Weiss G., Analyse harmonique noncommutative sur certains espaces homogénes, Lect. Notes Math., 242, Springer-Verlag, 1971, 160 pp. | MR | Zbl

[19] Ivanishko I. A., “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl

[20] Kinnunen J., Martio O., “The Sobolev capacity on metric spaces”, Ann. Acad. Sci. Fenn., 21 (1996), 367–382 | MR | Zbl

[21] Prokhorovich M. A., “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha-Soboleva na metricheskikh prostranstvakh s meroi”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 1, 19–23 | MR

[22] Kinnunen J., Latvala V., “Lebesgue points for Sobolev functions on metric spaces”, Revista Mat. Iberoamericana, 18:3 (2002), 685–700 | MR | Zbl

[23] Prokhorovich M. A., “Razmernost Khausdorfa mnozhestva Lebega dlya klassov $W_\alpha^p$ na metricheskikh prostranstvakh”, Matem. zametki, 82:1 (2007), 99–107 | MR

[24] Calderon A. P., Scott R., “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[25] DeVore R., Sharpley R., Maximal functions measuring smoothness, Memoirs. Amer. Math. Soc., 47, no. 293, 1984, 115 pp. | MR

[26] Krotov V. G., “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii na metricheskikh prostranstvakh s meroi”, Izv. NAN Armenii. Matematika, 41:2 (2006), 25–42 | MR

[27] Macias R. A., Segovia C., “A decomposition into atoms of distributions on spaces of homogeneous type”, Advances Math., 33:3 (1979), 271–309 | DOI | MR | Zbl