The Hardy--Littlewood theorem for trigonometric series with generalized monotone coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier we introduced a continuous scale of monotony for sequences (classes $M_\alpha$, $\alpha\ge 0$), where, for example, $M_0$ is the set of all nonnegative vanishing sequences, $M_1$ is the class of all nonincreasing sequences, tending to zero, etc. In addition, we extended several results obtained for trigonometric series with monotone convex coefficients onto more general classes. The main result of this paper is a generalization of the well-known Hardy–Littlewood theorem for trigonometric series, whose coefficients belong to classes $M_\alpha$, where $\alpha\in(\frac12,1)$. Namely, the following assertion is true. Let $\alpha\in(\frac12,1)$, $\frac1\alpha$, a sequence $\mathbf a\in M_\alpha$ and $\sum\limits_{n=1}^\infty a_n^p n^{p-2}\infty$. Then the series $\frac{a_0}2+\sum\limits_{n=1}^\infty a_n\cos nx$ converges on $(0,2\pi)$ to a finite function $f(x)$ and $f(x)\in L_p(0,2\pi)$.
Keywords: Fourier series, generalized monotone coefficients, the Hardy–Littlewood theorem.
@article{IVM_2008_5_a4,
     author = {M. I. Dyachenko},
     title = {The {Hardy--Littlewood} theorem for trigonometric series with generalized monotone coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--47},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a4/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - The Hardy--Littlewood theorem for trigonometric series with generalized monotone coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 38
EP  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a4/
LA  - ru
ID  - IVM_2008_5_a4
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T The Hardy--Littlewood theorem for trigonometric series with generalized monotone coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 38-47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a4/
%G ru
%F IVM_2008_5_a4
M. I. Dyachenko. The Hardy--Littlewood theorem for trigonometric series with generalized monotone coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 38-47. http://geodesic.mathdoc.fr/item/IVM_2008_5_a4/

[1] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965, 615 pp. | MR

[2] Dyachenko M. I., “Trigonometricheskie ryady s obobschenno-monotonnymi koeffitsientami”, Izv. vuzov. Matematika, 1986, no. 7, 39–50 | MR

[3] Andersen A. F., “Comparison theorems in the theory of Cesaro summability”, Proc. London Math. Soc. Ser. 2, 27:1 (1927), 39–71 | DOI | MR | Zbl

[4] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.