Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_5_a3, author = {M. G. Grigorian}, title = {On the strengthened $L^1$-greedy property of the {Walsh} system}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--37}, publisher = {mathdoc}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/} }
M. G. Grigorian. On the strengthened $L^1$-greedy property of the Walsh system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 26-37. http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987, 344 pp. | MR | Zbl
[2] Temlyakov V. N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl
[3] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Advances in Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl
[4] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approxim., 5:1 (1999), 1–15 | MR
[5] Wojtaszczyk P., “Greedy algorithm for general biorthogonal systems”, J. Approxim. Theory, 107 (2000), 293–314 | DOI | MR | Zbl
[6] Grigoryan M. G., “O skhodimosti v metrike $L^p$ gridi algoritma po trigonometricheskoi sisteme”, Izv. NAN Armenii, 39:4 (2004), 89–116 | MR
[7] Grigoryan M. G., Gogyan S. L., “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32 (2006), 49–80 | DOI | MR | Zbl
[8] Grigorian M. G., Zink R. E., “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl
[9] Körner T. W., “Divergence of decreasing rearranged Fourier series”, Ann. Math., 144 (1996), 167–180 | DOI | MR | Zbl
[10] Gogyan S. L., “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11 (2005), 221–236 | MR | Zbl
[11] Sargsyan A. A., “Svoistvo kvazigridi sistemnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Armenii, 40:3 (2005), 46–54 | MR
[12] Sargsyan A. A., “O kvazigridi sistemnosti i demokratichnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Armenii, 41:2 (2006), 57–74 | MR
[13] Luzin N. N., “K osnovnoi teoreme integralnogo ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | MR
[14] Menshov D. E., “O ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 11(53):2 (1942), 67–96 | MR | Zbl
[15] Menshov D. E., “O ryadakh Fure ot summiruemykh funktsii”, Tr. Mosk. matem. o-va, 1, 1952, 5–38
[16] Talalyan A. A., “O zavisimosti skhodimosti ortogonalnykh ryadov ot izmeneniya znachenii razlagaemoi funktsii”, Matem. zametki, 33:5 (1983), 715–722 | MR | Zbl
[17] Tsereteli O. D., “O skhodimosti pochti vsyudu ryadov Fure”, Soobsch. AN Gruz. SSR, 57:1 (1970), 21–24
[18] Price J. J., “Walsh series and adjustment of functions on small sets”, Illinois J. Math., 13 (1969), 131–136 | MR | Zbl
[19] Grigorian M. G., Kazarian K. S., Soria F., “Mean convergence of orthonormal Fourier series of mod. functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3799 | DOI | MR
[20] Grigoryan M. G., “Ob usilennom $L_\mu^p$ svoistve”, Matem. sb., 194:10 (2003), 77–106 | MR | Zbl
[21] Grigorian M. G., “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Stud. Math., 134:3 (1999), 207–216 | MR | Zbl
[22] Grigoryan M. G., “O skhodimosti ryadov Fure–Uolsha v metrike $L^1$ i pochti vsyudu”, Izv. vuzov. Matematika, 1990, no. 11, 9–18 | MR | Zbl
[23] Grigorian M. G., “On the convergence of Fourier series in the metric of $L^1$”, Anal. Math., 17 (1991), 211–237 | DOI | MR | Zbl
[24] Oskolkov K. I., “Ravnomernyi modul nepreryvnosti summiruemykh funktsii na mnozhestvakh polozhitelnoi mery”, DAN SSSR, 229:2 (1976), 304–306 | MR | Zbl
[25] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR
[26] Arutyunyan F. G., “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl
[27] Gribonval R., Nielsen M., On the quasi-greedy property and uniformly bounded orthonormal systems, http://www.math.auc.dk/research/reports/R-2003-09.pdf | MR