On the strengthened $L^1$-greedy property of the Walsh system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $0\varepsilon1$ a measurable set $E\subset[0,1]$ exists with a measure $|E|>1-\varepsilon$ such that for each function $f(x)\in L^1(0,1)$ one can find a function $g(x)\in L^1(0,1)$, which coincides with $f(x)$ on $E$, such that its Fourier–Walsh series converges to it in the $L^1(0,1)$-metrics, and all nonzero terms of the sequence of the Fourier coefficients of the new function obtained by the Walsh system have the modulo decreasing order, and, consequently, the greedy algorithm for this function converges to it in the $L^1(0,1)$-norm.
Keywords: Fourier series, Walsh system, the greedy algorithm, convergence in the $L^1(0,1)$-norm.
@article{IVM_2008_5_a3,
     author = {M. G. Grigorian},
     title = {On the strengthened $L^1$-greedy property of the {Walsh} system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--37},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/}
}
TY  - JOUR
AU  - M. G. Grigorian
TI  - On the strengthened $L^1$-greedy property of the Walsh system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 26
EP  - 37
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/
LA  - ru
ID  - IVM_2008_5_a3
ER  - 
%0 Journal Article
%A M. G. Grigorian
%T On the strengthened $L^1$-greedy property of the Walsh system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 26-37
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/
%G ru
%F IVM_2008_5_a3
M. G. Grigorian. On the strengthened $L^1$-greedy property of the Walsh system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 26-37. http://geodesic.mathdoc.fr/item/IVM_2008_5_a3/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987, 344 pp. | MR | Zbl

[2] Temlyakov V. N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl

[3] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Advances in Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl

[4] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approxim., 5:1 (1999), 1–15 | MR

[5] Wojtaszczyk P., “Greedy algorithm for general biorthogonal systems”, J. Approxim. Theory, 107 (2000), 293–314 | DOI | MR | Zbl

[6] Grigoryan M. G., “O skhodimosti v metrike $L^p$ gridi algoritma po trigonometricheskoi sisteme”, Izv. NAN Armenii, 39:4 (2004), 89–116 | MR

[7] Grigoryan M. G., Gogyan S. L., “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32 (2006), 49–80 | DOI | MR | Zbl

[8] Grigorian M. G., Zink R. E., “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl

[9] Körner T. W., “Divergence of decreasing rearranged Fourier series”, Ann. Math., 144 (1996), 167–180 | DOI | MR | Zbl

[10] Gogyan S. L., “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11 (2005), 221–236 | MR | Zbl

[11] Sargsyan A. A., “Svoistvo kvazigridi sistemnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Armenii, 40:3 (2005), 46–54 | MR

[12] Sargsyan A. A., “O kvazigridi sistemnosti i demokratichnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Armenii, 41:2 (2006), 57–74 | MR

[13] Luzin N. N., “K osnovnoi teoreme integralnogo ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | MR

[14] Menshov D. E., “O ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 11(53):2 (1942), 67–96 | MR | Zbl

[15] Menshov D. E., “O ryadakh Fure ot summiruemykh funktsii”, Tr. Mosk. matem. o-va, 1, 1952, 5–38

[16] Talalyan A. A., “O zavisimosti skhodimosti ortogonalnykh ryadov ot izmeneniya znachenii razlagaemoi funktsii”, Matem. zametki, 33:5 (1983), 715–722 | MR | Zbl

[17] Tsereteli O. D., “O skhodimosti pochti vsyudu ryadov Fure”, Soobsch. AN Gruz. SSR, 57:1 (1970), 21–24

[18] Price J. J., “Walsh series and adjustment of functions on small sets”, Illinois J. Math., 13 (1969), 131–136 | MR | Zbl

[19] Grigorian M. G., Kazarian K. S., Soria F., “Mean convergence of orthonormal Fourier series of mod. functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3799 | DOI | MR

[20] Grigoryan M. G., “Ob usilennom $L_\mu^p$ svoistve”, Matem. sb., 194:10 (2003), 77–106 | MR | Zbl

[21] Grigorian M. G., “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Stud. Math., 134:3 (1999), 207–216 | MR | Zbl

[22] Grigoryan M. G., “O skhodimosti ryadov Fure–Uolsha v metrike $L^1$ i pochti vsyudu”, Izv. vuzov. Matematika, 1990, no. 11, 9–18 | MR | Zbl

[23] Grigorian M. G., “On the convergence of Fourier series in the metric of $L^1$”, Anal. Math., 17 (1991), 211–237 | DOI | MR | Zbl

[24] Oskolkov K. I., “Ravnomernyi modul nepreryvnosti summiruemykh funktsii na mnozhestvakh polozhitelnoi mery”, DAN SSSR, 229:2 (1976), 304–306 | MR | Zbl

[25] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR

[26] Arutyunyan F. G., “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl

[27] Gribonval R., Nielsen M., On the quasi-greedy property and uniformly bounded orthonormal systems, http://www.math.auc.dk/research/reports/R-2003-09.pdf | MR