@article{IVM_2008_5_a10,
author = {A. M. Sedletskii},
title = {Approximation of {M\"untz{\textendash}Szasz} type in weighted $L^p$ spaces, and the zeros of functions of the {Bergman} classes in a half-plane},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {92--100},
year = {2008},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a10/}
}
TY - JOUR AU - A. M. Sedletskii TI - Approximation of Müntz–Szasz type in weighted $L^p$ spaces, and the zeros of functions of the Bergman classes in a half-plane JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 92 EP - 100 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVM_2008_5_a10/ LA - ru ID - IVM_2008_5_a10 ER -
%0 Journal Article %A A. M. Sedletskii %T Approximation of Müntz–Szasz type in weighted $L^p$ spaces, and the zeros of functions of the Bergman classes in a half-plane %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2008 %P 92-100 %N 5 %U http://geodesic.mathdoc.fr/item/IVM_2008_5_a10/ %G ru %F IVM_2008_5_a10
A. M. Sedletskii. Approximation of Müntz–Szasz type in weighted $L^p$ spaces, and the zeros of functions of the Bergman classes in a half-plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 92-100. http://geodesic.mathdoc.fr/item/IVM_2008_5_a10/
[1] Müntz Ch., “Über den Approximationssatz von Weierstrass”, H. A. Schwartz Festschrift, Berlin, 1914, 303–312 | Zbl
[2] Szasz O., “Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen”, Math. Ann., 77 (1916), 482–496 | DOI | MR | Zbl
[3] Sedletskii A. M., Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 504 pp.
[4] Sedletskii A. M., “Problema Myuntsa–Sasa i nuli analiticheskikh funktsii”, Teoriya funktsii i pribl., Tr. 3-i Saratovsk. zimnei shk., SGU, 1987, 59–63 | MR
[5] Horowitz Ch., “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl
[6] Beller E., “Zeros of $A^p$ functions and related classes of analytic functions”, Israel J. Math., 22 (1975), 68–80 | DOI | MR | Zbl