Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 4-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $1\leq p\infty$ and the function $f\in L^p[0,\pi]$ has the Fourier series $\sum\limits^\infty_{n=1}a_n\cos nx$. According to Hardy, the series $\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal H(f)\in L^p[0,\pi]$. But if $1 p\le \infty$ and $f\in L^p[0,\pi]$, then the series $\sum\limits^\infty_{n=1}\sum\limits^\infty_{k=n}k^{-1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal B(f)\in L^p[0,\pi]$. Similar assertions are true for sine series. This allows one to define the Hardy operator $\mathcal H$ on $L^p(\mathbb T)$, $1\le p\infty$, and to define the Bellman operator $\mathcal B$ on $L^p(\mathbb T)$, $1 p\le\infty$. We prove that the Bellman operator boundedly acts in $VMO(\mathbb T)$, and the Hardy operator maps a certain subspace $C(\mathbb T)$ into $VMO(\mathbb T)$. We also prove the invariance of certain classes of functions with given majorants of modules of continuity or best approximations in the spaces $H(\mathbb T)$, $L(\mathbb T)$, $VMO(\mathbb T)$ with respect to the Hardy and Bellman operators.
Keywords: Hardy transform, BMO, VMO, majorant of modulus of continuity.
Mots-clés : Bellman transform
@article{IVM_2008_5_a1,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Hardy and {Bellman} operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {4--13},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 4
EP  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/
LA  - ru
ID  - IVM_2008_5_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 4-13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/
%G ru
%F IVM_2008_5_a1
S. S. Volosivets; B. I. Golubov. Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 4-13. http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/

[1] Hardy G. H., “Notes on some points in the integral calculus”, Messenger Math., 49 (1919), 149–155

[2] Hardy G. H., “Notes on some points in the integral calculus, LXVI”, Messenger Math., 58 (1928), 50–52 | MR | Zbl

[3] Bellman R., “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Math. Soc., 50:10 (1944), 741–744 | DOI | MR | Zbl

[4] Loo C.-T., “Transformations of Fourier coefficients”, Amer. J. Math., 71:2 (1949), 269–282 | DOI | MR | Zbl

[5] Konyushkov A. A., “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448

[6] Golubov B. I., “O preobrazovaniyakh Khardi i Bellmana koeffitsientov Fure”, Ryady Fure: teoriya i prilozheniya, In-t matem. Ukr. Akad. nauk, Kiev, 1992, 18–26 | MR

[7] Siskakis A. G., “Composition semi-groups and the Cesaro operator on $H^p$”, J. London Math. Soc., 36:1 (1987), 153–164 | DOI | MR | Zbl

[8] Siskakis A. G., “The Cesaro operator is bounded on $H^1$”, Proc. Amer. Math. Soc., 110:2 (1990), 461–462 | DOI | MR | Zbl

[9] Stempak K., “Cesaro averaging operators”, Proc. Royal Soc. Edinburgh, 124A (1994), 121–126 | MR

[10] Giang D. V., Moricz F., “The Cesaro operator is bounded on the Hardy space”, Acta Sci. Math. (Szeged), 61:3–4 (1995), 535–544 | MR | Zbl

[11] Golubov B. I., “O preobrazovaniyakh Khardi i Bellmana prostranstv $H^1$ i $BMO$”, Matem. zametki, 63:3 (1998), 475–478 | MR | Zbl

[12] Golubov B. I., “On boundedness of the Hardy and Bellman operators in the spaces $H$ and $BMO$”, Numer. Funct. Anal. Optimiz., 21 (2000), 145–158 | DOI | MR | Zbl

[13] Xiao J., “Cesaro transforms of Fourier coefficients of $L^\infty$-functions”, Proc. Amer. Math. Soc., 125:12 (1997), 3613–3616 | DOI | MR | Zbl

[14] Golubov B. I., “Ogranichennost operatorov Khardi i Khardi–Littlvuda v prostranstvakh $\mathrm{Re}\,H^1$ i $BMO$”, Matem. sb., 188:7 (1997), 93–106 | MR | Zbl

[15] Moricz F., “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\leq p\leq\infty$, $H^1$ and $BMO$”, Acta Sci. Math. (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl

[16] Golubov B. I., “Ob odnoi teoreme Bellmana”, Matem. sb., 185:11 (1994), 31–40 | MR | Zbl

[17] Andersen K. F., “On the representation of Fourier coefficients of certain classes of functions”, Pacific J. Math., 100:2 (1982), 243–248 | MR | Zbl

[18] Rodin V. A., “Preobrazovaniya Khardi i Bellmana v prostranstvakh, blizkikh k $L_\infty$ i $L_1$”, Zapiski nauch. sem. POMI, 262, 1999, 204–213 | Zbl

[19] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[20] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[21] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207:2 (1975), 391–405 | DOI | MR | Zbl

[22] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 472 pp. | MR | Zbl

[23] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. o-va, 5, 1956, 483–522 | MR | Zbl

[24] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp. | MR | Zbl

[25] Kuttner B., “Some theorems on fractional derivatives”, Proc. London Math. Soc., 3 (1953), 480–497 | DOI | MR | Zbl

[26] Bergh J., “Functions of bounded mean oscillation and Hausdorff–Young type theorems”, Lect. Notes in Math., 1302, 1988, 130–136 | MR | Zbl

[27] Konyushkov A. A., “O nailuchshikh priblizheniyakh pri preobrazovanii koeffitsientov Fure metodom srednikh arifmeticheskikh i o ryadakh Fure s neotritsatelnymi koeffitsientami”, Sib. matem. zhurn., 3:1 (1962), 56–78 | Zbl