Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 4-13

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $1\leq p\infty$ and the function $f\in L^p[0,\pi]$ has the Fourier series $\sum\limits^\infty_{n=1}a_n\cos nx$. According to Hardy, the series $\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal H(f)\in L^p[0,\pi]$. But if $1 p\le \infty$ and $f\in L^p[0,\pi]$, then the series $\sum\limits^\infty_{n=1}\sum\limits^\infty_{k=n}k^{-1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal B(f)\in L^p[0,\pi]$. Similar assertions are true for sine series. This allows one to define the Hardy operator $\mathcal H$ on $L^p(\mathbb T)$, $1\le p\infty$, and to define the Bellman operator $\mathcal B$ on $L^p(\mathbb T)$, $1 p\le\infty$. We prove that the Bellman operator boundedly acts in $VMO(\mathbb T)$, and the Hardy operator maps a certain subspace $C(\mathbb T)$ into $VMO(\mathbb T)$. We also prove the invariance of certain classes of functions with given majorants of modules of continuity or best approximations in the spaces $H(\mathbb T)$, $L(\mathbb T)$, $VMO(\mathbb T)$ with respect to the Hardy and Bellman operators.
Keywords: Hardy transform, BMO, VMO, majorant of modulus of continuity.
Mots-clés : Bellman transform
@article{IVM_2008_5_a1,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Hardy and {Bellman} operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {4--13},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 4
EP  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/
LA  - ru
ID  - IVM_2008_5_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 4-13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/
%G ru
%F IVM_2008_5_a1
S. S. Volosivets; B. I. Golubov. Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 4-13. http://geodesic.mathdoc.fr/item/IVM_2008_5_a1/