Braided symmetric and exterior algebras and the quantization of braided Lie algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study quantizations of braided symmetric and exterior algebras of graded vector spaces and of braided derivations on these algebras. We find quantizations of braided Lie algebras by considering quantizations of derivations on their braided exterior algebra.
Mots-clés : quantization, module.
Keywords: braided algebra, symmetric algebra, derivation, Lie algebra
@article{IVM_2008_4_a7,
     author = {H. L. Huru},
     title = {Braided symmetric and exterior algebras and the quantization of braided {Lie} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--84},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a7/}
}
TY  - JOUR
AU  - H. L. Huru
TI  - Braided symmetric and exterior algebras and the quantization of braided Lie algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 73
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_4_a7/
LA  - ru
ID  - IVM_2008_4_a7
ER  - 
%0 Journal Article
%A H. L. Huru
%T Braided symmetric and exterior algebras and the quantization of braided Lie algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 73-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_4_a7/
%G ru
%F IVM_2008_4_a7
H. L. Huru. Braided symmetric and exterior algebras and the quantization of braided Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 73-84. http://geodesic.mathdoc.fr/item/IVM_2008_4_a7/

[1] Gurevich D., Radul A., Rubtsov V., Non-commutative differential geometry and Yang-Baxter equation, Preprint 88, Intitute des Hautes Etudies Scientifiques, 1991 | Zbl

[2] Huru H. L., Lychagin V. V., Quantizations and classical non-commutative and non-associative algebras, Preprint, Institut Mittag-Leffler, Stockholm, 2005 | MR | Zbl

[3] Huru H. L., “Associativity constraints, braidings and quantizations of modules with grading and action”, Lobachevskii J. Math., 23 (2006), 5–27 | MR | Zbl

[4] Huru H. L., “Quantizations of braided derivations. 1. Monoidal categories”, Lobachevskii J. Math., 24 (2006), 13–42 | MR | Zbl

[5] Jensen C. V., Linear ordinary differential equations and $D$-modules, solving and reduction methods, Dr. Sci. Thesis, The University of Tromsø, November 2004

[6] Lychagin V. V., “Calculus and quantizations over Hopf algebras”, Acta Appl. Math., 51:3 (1998), 303–352 | DOI | MR | Zbl

[7] Nijenhuis A., Richardson R. W., “Deformations of Lie algebra structures”, J. Math. Mech., 17 (1967), 89–105 | MR | Zbl

[8] Huru H. L., “Quantizations of braided derivations. 2. Graded modules”, Lobachevskii J. of Math., 25 (2007), 131–160 | MR

[9] Gurevich D. I., “Uravnenie Yanga-Bakstera i obobscheniya formalnoi teorii Li”, DAN SSSR, 288 (1986), 797–801 | MR | Zbl

[10] Gurevich D., Rubtsov V., “Yang-Baxter equation and deformation of associative and Lie algebras”, Quantum Groups, Proceedings of Workshops at the Euler International Institute, Springer-Verlag, 1990, 47–55