The relative Chebyshev center of a finite set in a geodesic space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 66-72

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we estimate variation in the relative Chebyshev radius $R_W(M)$, where $M$ and $W$are nonempty bounded sets of a metric space, as the sets $M$ and $W$ change. We find the closure and the interior of the set of all $N$-nets each of which contains its unique relative Chebyshev center, in the set of all $N$-nets of a special geodesic space endowed by the Hausdorff metric. We consider various properties of relative Chebyshev centers of a finite set which lie in this set.
Keywords: relative Chebyshev center, Hausdorff metric, geodesic space.
@article{IVM_2008_4_a6,
     author = {E. N. Sosov},
     title = {The relative {Chebyshev} center of a finite set in a geodesic space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--72},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - The relative Chebyshev center of a finite set in a geodesic space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 66
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/
LA  - ru
ID  - IVM_2008_4_a6
ER  - 
%0 Journal Article
%A E. N. Sosov
%T The relative Chebyshev center of a finite set in a geodesic space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 66-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/
%G ru
%F IVM_2008_4_a6
E. N. Sosov. The relative Chebyshev center of a finite set in a geodesic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 66-72. http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/