The relative Chebyshev center of a finite set in a geodesic space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 66-72
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we estimate variation in the relative Chebyshev radius $R_W(M)$, where $M$ and $W$are nonempty bounded sets of a metric space, as the sets $M$ and $W$ change. We find the closure and the interior of the set of all $N$-nets each of which contains its unique relative Chebyshev center, in the set of all $N$-nets of a special geodesic space endowed by the Hausdorff metric. We consider various properties of relative Chebyshev centers of a finite set which lie in this set.
Keywords:
relative Chebyshev center, Hausdorff metric, geodesic space.
@article{IVM_2008_4_a6,
author = {E. N. Sosov},
title = {The relative {Chebyshev} center of a finite set in a geodesic space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {66--72},
publisher = {mathdoc},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/}
}
E. N. Sosov. The relative Chebyshev center of a finite set in a geodesic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 66-72. http://geodesic.mathdoc.fr/item/IVM_2008_4_a6/