Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_4_a4, author = {A. G. Kushner}, title = {Contact linearization of nondegenerate equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--58}, publisher = {mathdoc}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/} }
A. G. Kushner. Contact linearization of nondegenerate equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 43-58. http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/
[1] Lie S., “Über einige partielle Differentialgleichungen zweiter Ordnung”, Math. Ann., 5 (1872), 209–256 | DOI | MR
[2] Lie S., “Begrundung einer Invariantentheorie der Berührungstransformationen”, Math. Ann., 8 (1874), 215–303 | DOI | MR
[3] Lie S., “Classification und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR
[4] Lychagin V. V., Roubtsov V. N., “On Sophus Lie theorems for Monge–Ampere equations”, Dokl. Akad. Nauk BSSR, 27:5 (1983), 396–398 | MR | Zbl
[5] Lychagin V. V., Rubtsov V. N., Chekalov I. V., “A classification of Monge–Ampère equations”, Ann. Sci. École Norm. Supér. (4), 26:3 (1993), 281–308 | MR | Zbl
[6] Kruglikov B. S., “Classification of Monge–Ampère equations with two variables”, CAUSTICS '98, Polish Acad. Sci., Warsaw, 1998, 179–194
[7] Kushner A., “Classification of mixed type Monge–Ampère equations”, Geometry in partial differential equations, World Scientific, Singapore–New Jersey–London–Hong Kong, 1993, 173–188 | MR
[8] Kushner A., “Symplectic geometry of mixed type equations”, Amer. Math. Soc. Transl., Ser. 2, 1995, 131–142 | MR | Zbl
[9] Kushner A. G., “Uravneniya Monzha–Ampera i $e$-struktury”, Dokl. RAN, 361:5 (1998), 595–596 | MR | Zbl
[10] Kushner A. G., “Normalnye formy Chaplygina i Keldysha uravnenii Monzha–Ampera peremennogo tipa”, Matem. zametki, 52:5 (1992), 63–67 | MR | Zbl
[11] Tunitskii D. V., “O kontaktnoi linearizatsii uravnenii Monzha–Ampera”, Izv. RAN.- Ser. Matem., 60:2 (1996), 195–220 | MR
[12] Kushner A., “Almost product structures and Monge–Ampere equations”, Lobachevskii J. of Math., 23 (2006), 151–181 ; http://ljm.ksu.ru | MR | Zbl
[13] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007, 496 pp. | Zbl
[14] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1 (1979), 137–165 | MR | Zbl
[15] Lychagin V. V., Lectures on geometry of differential equations, V. 1, 2, “La Sapienza”, Rome, Italy, 1993
[16] Forsyth A. R., Theory of differential equations. Part 4. Partial differential equations, V. 6, Cambridge University Press, 1906, 596 pp.