Contact linearization of nondegenerate equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 43-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the problem of transforming the classical Monge–Ampère equations to the linear equations by change of variables. The class of Monge–Ampère equations is distinguished from the variety of second-order partial differential equations by the property that this class is closed under contact transformations. This fact was known already to Sophus Lie who studied the Monge–Ampère equations using methods of contact geometry. Therefore it is natural to consider the classification problems for the Monge–Ampère equations with respect to the pseudogroup of contact transformations. In the present paper we give the complete solution to the problem of linearization of regular elliptic and hyperbolic Monge–Ampère equations with respect to contact transformations. In order to solve this problem, we construct invariants of the Monge–Ampère equations and the Laplace differential forms, which involve the classical Laplace invariants as coefficients.
Mots-clés : contact transformations, Laplace invariants.
Keywords: tensor invariants
@article{IVM_2008_4_a4,
     author = {A. G. Kushner},
     title = {Contact linearization of nondegenerate equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--58},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/}
}
TY  - JOUR
AU  - A. G. Kushner
TI  - Contact linearization of nondegenerate equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 43
EP  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/
LA  - ru
ID  - IVM_2008_4_a4
ER  - 
%0 Journal Article
%A A. G. Kushner
%T Contact linearization of nondegenerate equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 43-58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/
%G ru
%F IVM_2008_4_a4
A. G. Kushner. Contact linearization of nondegenerate equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 43-58. http://geodesic.mathdoc.fr/item/IVM_2008_4_a4/

[1] Lie S., “Über einige partielle Differentialgleichungen zweiter Ordnung”, Math. Ann., 5 (1872), 209–256 | DOI | MR

[2] Lie S., “Begrundung einer Invariantentheorie der Berührungstransformationen”, Math. Ann., 8 (1874), 215–303 | DOI | MR

[3] Lie S., “Classification und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR

[4] Lychagin V. V., Roubtsov V. N., “On Sophus Lie theorems for Monge–Ampere equations”, Dokl. Akad. Nauk BSSR, 27:5 (1983), 396–398 | MR | Zbl

[5] Lychagin V. V., Rubtsov V. N., Chekalov I. V., “A classification of Monge–Ampère equations”, Ann. Sci. École Norm. Supér. (4), 26:3 (1993), 281–308 | MR | Zbl

[6] Kruglikov B. S., “Classification of Monge–Ampère equations with two variables”, CAUSTICS '98, Polish Acad. Sci., Warsaw, 1998, 179–194

[7] Kushner A., “Classification of mixed type Monge–Ampère equations”, Geometry in partial differential equations, World Scientific, Singapore–New Jersey–London–Hong Kong, 1993, 173–188 | MR

[8] Kushner A., “Symplectic geometry of mixed type equations”, Amer. Math. Soc. Transl., Ser. 2, 1995, 131–142 | MR | Zbl

[9] Kushner A. G., “Uravneniya Monzha–Ampera i $e$-struktury”, Dokl. RAN, 361:5 (1998), 595–596 | MR | Zbl

[10] Kushner A. G., “Normalnye formy Chaplygina i Keldysha uravnenii Monzha–Ampera peremennogo tipa”, Matem. zametki, 52:5 (1992), 63–67 | MR | Zbl

[11] Tunitskii D. V., “O kontaktnoi linearizatsii uravnenii Monzha–Ampera”, Izv. RAN.- Ser. Matem., 60:2 (1996), 195–220 | MR

[12] Kushner A., “Almost product structures and Monge–Ampere equations”, Lobachevskii J. of Math., 23 (2006), 151–181 ; http://ljm.ksu.ru | MR | Zbl

[13] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007, 496 pp. | Zbl

[14] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1 (1979), 137–165 | MR | Zbl

[15] Lychagin V. V., Lectures on geometry of differential equations, V. 1, 2, “La Sapienza”, Rome, Italy, 1993

[16] Forsyth A. R., Theory of differential equations. Part 4. Partial differential equations, V. 6, Cambridge University Press, 1906, 596 pp.