Similarly homogeneous locally compact spaces with an intrinsic measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 28-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we generalize partially the theorem of V. N. Berestovskii on characterization of similarity homogeneous (nonhomogeneous) Riemannian manifolds, i. e., Riemannian manifolds admitting transitive group of metric similarities other than motions to the case of locally compact similarity homogeneous (nonhomogeneous) spaces with intrinsic metric satisfying the additional assumption that the canonically conformally equivalent homogeneous space is д-homogeneous or a space of curvature bounded below in the sense of A. D. Aleksandrov. Under the same assumptions, we prove the conjecture of V. N. Berestovskii on topological structure of such spaces.
Keywords: similarity homogeneous space, intrinsic metric, submetry, space of curvature bounded below in the sense of A. D. Aleksandrov, homogeneous space, $\delta$-homogeneous space.
@article{IVM_2008_4_a3,
     author = {I. A. Gundyrev},
     title = {Similarly homogeneous locally compact spaces with an intrinsic measure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--42},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a3/}
}
TY  - JOUR
AU  - I. A. Gundyrev
TI  - Similarly homogeneous locally compact spaces with an intrinsic measure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 28
EP  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_4_a3/
LA  - ru
ID  - IVM_2008_4_a3
ER  - 
%0 Journal Article
%A I. A. Gundyrev
%T Similarly homogeneous locally compact spaces with an intrinsic measure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 28-42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_4_a3/
%G ru
%F IVM_2008_4_a3
I. A. Gundyrev. Similarly homogeneous locally compact spaces with an intrinsic measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 28-42. http://geodesic.mathdoc.fr/item/IVM_2008_4_a3/

[1] Berestovskii V. N., “Podobno odnorodnye lokalno polnye prostranstva s vnutrennei metrikoi”, Izv. vuzov. Matematika, 2004, no. 11, 3–22 | MR

[2] Yamabe H., “A generalization of a theorem of Gleason”, Ann. of Math., 58:2 (1953), 351–365 | DOI | MR | Zbl

[3] Berestovskii V. N., “O strukture odnorodnykh lokalno-kompaktnykh prostranstv s vnutrennei metrikoi”, Sib. matem. zhurn., 30:1 (1989), 23–34 | MR

[4] Berestovskii V., Plaut C., “Homogeneous spaces of curvature bounded below”, J. of Geomet. Anal., 9:2 (1999), 203–219 | MR | Zbl

[5] Berestovskii V. N., Nikonorov Yu. G., On $\delta$-homogeneous Riemannian manifolds, arxiv: math.DG/0611557v2

[6] Berestovskii V. N., “Submetrii prostranstvennykh form neotritsatelnoi krivizny”, Sib. matem. zhurn., 35:4 (1987), 44–56 | MR

[7] Berestovskii V., Plaut C., Stallman C., “Geometric groups”, Trans. Amer. Math. Soc., 351:4 (April 1999), 1403–1422 | DOI | MR | Zbl

[8] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp.

[9] Berestovskii V. N., “Odnorodnye $G$-prostranstva Buzemana”, Sib. matem. zhurn., 23:2 (1982), 3–15 | MR

[10] Sosov E. N., “O konechnoi kompaktnosti i polnote nekotorykh prostranstv otobrazhenii s metrikoi Buzemana”, Izv. vuzov. Matematika, 1993, no. 11, 62–68 | MR | Zbl

[11] Andreev P. D., “Polulineinye metricheskie polureshetki na $\mathbb{R}$-derevyakh”, Izv. vuzov. Matematika, 2007, no. 6, 3–13 | MR | Zbl

[12] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, RKhD, Moskva–Izhevsk, 2004, 512 pp.