Infinitesimal $F$-planar transformations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of $F$-planar maps of Riemannian spaces and affinely connected spaces developed by J. Mikeš and N. S. Sinyukov [1–6] naturally extends the theory of geodesic and holomorphic projective maps. In the present paper we find basic equations of infinitesimal F-planar maps and study these equations. The $F$-planar maps are maps between spaces endowed with affinor structures. The geometry of Riemannian spaces and affinely connected spaces endowed by affinor structures was investigated by A. P. Shirokov (see, e.g., [7–14]) who also studied maps between spaces of this type ([13, 14]).
Keywords: $F$-planar map, affinely connected space, infinitesimal $F$-planar map.
Mots-clés : projective transformation
@article{IVM_2008_4_a1,
     author = {I. Hinterleitner and J. Mikesh and Ya. Stranska},
     title = {Infinitesimal $F$-planar transformations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--21},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_4_a1/}
}
TY  - JOUR
AU  - I. Hinterleitner
AU  - J. Mikesh
AU  - Ya. Stranska
TI  - Infinitesimal $F$-planar transformations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 16
EP  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_4_a1/
LA  - ru
ID  - IVM_2008_4_a1
ER  - 
%0 Journal Article
%A I. Hinterleitner
%A J. Mikesh
%A Ya. Stranska
%T Infinitesimal $F$-planar transformations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 16-21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_4_a1/
%G ru
%F IVM_2008_4_a1
I. Hinterleitner; J. Mikesh; Ya. Stranska. Infinitesimal $F$-planar transformations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2008), pp. 16-21. http://geodesic.mathdoc.fr/item/IVM_2008_4_a1/

[1] Mikesh I., Sinyukov N. S., “O kvaziplanarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Izv. vuzov. Matematika, 1983, no. 1, 55–61 | MR | Zbl

[2] Mikeš J., “$F$-planar mappings and transformations”, Diff. geometry and its appl., Proc. of the Conference (August 24–30, 1986, Brno, Czechoslovakia), 245–254 | MR | Zbl

[3] Mikesh I., “Ob $F$-planarnykh i $f$-planarnykh otobrazheniyakh, preobrazovaniyakh i deformatsiyakh”, Geometr. obobschennykh prostranstv, Penza, 1992, 60–65 | MR

[4] Mikesh I., “O spetsialnykh $F$-planarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Vestn. Moskovsk. un-ta, 1994, no. 3, 18–24 | MR | Zbl

[5] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci., 89, no. 3, New York, 1998, 1334–1353 | Zbl

[6] Hinterleitner I., Mikes J., “On $F$-planar mappings of spaces with affine connections”, Note Mat., 27:1 (2007), 111–118 | MR | Zbl

[7] Shirokov A. P., “K voprosu ob $A$-prostranstvakh”, Sto dvadtsat pyat let neevklidovoi geometrii Lobachevskogo 1826–1951, GITTL, M.–L., 1952, 195–200 | MR

[8] Shirokov A. P., “Odno svoistvo kovariantno postoyannykh affinorov”, DAN SSSR, 102 (1955), 461–464 | MR | Zbl

[9] Shirokov A. P., “Struktury na differentsiruemykh mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Algebra. Topologiya. Geometriya, VINITI, M., 1967 (1969), 127–188

[10] Shirokov A. P., “Prostranstva nad algebrami i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Sovr. Matem. Prilozh., Tem. obzor., 73, VINITI, M., 2002, 135–161 | Zbl

[11] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1985, 262 pp. | MR

[12] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhn. Ser. Problemy geometrii, VINITI, M., 1979, 246 pp. | MR | Zbl

[13] Egiazaryan K. M., Shirokov A. P., “Proektirovanie svyaznostei v rassloeniyakh i ego prilozheniya k geometrii prostranstv nad algebrami”, Differents. geometriya, 4 (1979), 132–140 | Zbl

[14] Talantova N. V., Shirokov A. P., “Proektivnye modeli unitarnykh prostranstv postoyannoi krivizny nad algebrami dualnykh chisel”, Tr. geometrich. semin., 16, 1984, 103–110 | MR | Zbl

[15] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teoriya otnositelnosti, no. 4–5, Izd-vo Kazansk. un-ta, Kazan, 1968, 7–21

[16] Eizenkhart L. P., Rimanova geometriya, In. lit., M., 1948, 316 pp.

[17] Gavrilchenko M. L., Kiosak V. A., Mikesh I., “Geodezicheskie deformatsii giperpoverkhnostei rimanovykh prostranstv”, Izv. vuzov. Matematika, 2004, no. 11, 23–29 | MR

[18] Radulovich Zh., Mikesh I., Gavrilchenko M. L., Geodezicheskie otobrazheniya i deformatsii rimanovykh prostranstv, Izd. CID, Podgorica; Izd. OGU, Odessa, 1997, 127 pp. | MR | Zbl

[19] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78, no. 3, New York, 1996, 311–333 | Zbl