Expansion in eigenfunctions of the Sturm–Liouville problem on a graph bundle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 50-62
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider the applicability of the Fourier method for partial differential equations on spatial grids (we choose a bundle graph as a model). This leads to an important problem, namely, to the expansion of a given function in eigenfunctions of the corresponding Sturm–Liouville problem on a grid. We study a model problem which describes a symmetric case, when one considers physically identical one-dimensional continuums on the bundle graph. Such problems arise, for example, in the modeling of oscillating processes of an elastic mast with supporting elastic ties.
Keywords:
boundary-value problem on a graph, eigenfunctions, the Green function, completeness of system of eigenfunctions, expansion in eigenfunctions.
@article{IVM_2008_3_a4,
author = {V. V. Provotorov},
title = {Expansion in eigenfunctions of the {Sturm{\textendash}Liouville} problem on a graph bundle},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {50--62},
year = {2008},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a4/}
}
V. V. Provotorov. Expansion in eigenfunctions of the Sturm–Liouville problem on a graph bundle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 50-62. http://geodesic.mathdoc.fr/item/IVM_2008_3_a4/
[1] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 227 pp. | Zbl
[2] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 671 pp. | MR | Zbl
[3] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratovsk. ped. in-ta, Saratov, 2001, 499 pp.
[4] Shabat B. V., Vvedenie v kompleksnyi analiz. Ch. 1. Funktsii odnogo peremennogo, Nauka, M., 1976, 320 pp.