Abstract Volterra operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new general definition of Volterra operators. Several types of evolutionary operators, including Volterra ones in the sense of A. N. Tikhonov, satisfy this definition. For equations with generalized Volterra operators we introduce the notions of local, global, and maximally extended solutions. For solutions to nonlinear equations we formulate the existence, uniqueness, and extendability conditions. The theorems proved in this paper imply both known and new results on the solvability of concrete equations. We adduce an example of the application of obtained results to the study of the Cauchy problem for functional differential equations.
Keywords: abstract Volterra operators, Volterra invertibility of operators, extension of solutions, uniqueness of a solution, functional differential equations.
Mots-clés : local solutions
@article{IVM_2008_3_a0,
     author = {E. S. Zhukovskii and M. J. Alves},
     title = {Abstract {Volterra} operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a0/}
}
TY  - JOUR
AU  - E. S. Zhukovskii
AU  - M. J. Alves
TI  - Abstract Volterra operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 3
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_3_a0/
LA  - ru
ID  - IVM_2008_3_a0
ER  - 
%0 Journal Article
%A E. S. Zhukovskii
%A M. J. Alves
%T Abstract Volterra operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 3-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_3_a0/
%G ru
%F IVM_2008_3_a0
E. S. Zhukovskii; M. J. Alves. Abstract Volterra operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2008_3_a0/

[1] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byull. MGU. Sekts. A, 1:8 (1938), 1–25 | MR | Zbl

[2] Zhukovskii E. S., “K teorii uravnenii Volterra”, Differents. uravneniya, 25:9 (1989), 1599–1605 | MR

[3] Zhukovskii E. S., Lineinye evolyutsionnye funktsionalno-differentsialnye uravneniya v banakhovom prostranstve, Izd-vo Tambovsk. un-ta, Tambov, 2003, 140 pp.

[4] Zhukovskii E. S., “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matem. sb., 195:9 (2004), 3–18 | MR

[5] Akhmerov R. R., Kamenskii M. I., Potapov A. S., Rodkina A. E., Sadovskii B. N., “Teoriya uravnenii neitralnogo tipa”, Itogi nauki i tekhn. Matem. analiz, 19, VINITI, M., 1982, 55–126 | MR

[6] Zabreiko P. P., “Ob integralnykh operatorakh Volterra”, UMN, 22:1 (1967), 167–168 | MR

[7] Kurbatov V. G., “Ob obratimosti zapazdyvayuschikh operatorov”, Teoriya operatornykh uravnenii, Voronezh, 1979, 43–52 | Zbl

[8] Feintuch A., Saeks R., System Theory. A Hilbert space approach, Academic Press, New York–London, 1982, 310 pp. | MR | Zbl

[9] Gusarenko S. A., “Ob odnom obobschenii ponyatiya volterrova operatora”, DAN SSSR, 295:5 (1987), 1046–1049 | Zbl

[10] Vâth M., “Abstract Volterra equations of the second kind”, J. Equat. Appl., 10:9 (1998), 125–144 | MR

[11] Azbelev N. V., Berezanskii L. M., Rakhmatullina L. F., “O lineinom funktsionalno-differentsialnom uravnenii evolyutsionnogo tipa”, Differents. uravneniya, 13:11 (1977), 1915–1925 | MR | Zbl

[12] Bulgakov A. I., Elementy teorii kraevykh zadach dlya funktsionalno-differentsialnykh vklyuchenii, Dis. dokt. fiz.-matem. nauk, Tambovsk. in-t khimich. mashinostroeniya, Tambov, 1993, 300 pp.

[13] Kurbatov V. G., “O radikale algebry zapazdyvayuschikh operatorov”, Funktsionalno-differentsialnye uravneniya i kraevye zadachi matematicheskoi fiziki, Perm, 1978, 126–127

[14] Berezanskii L. M., “O spektralnom radiuse operatora vnutrennei superpozitsii”, Kraevye zadachi, Izd-vo Permskogo politekhn. in-ta, Perm, 1977, 60–61

[15] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[16] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl

[17] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issled., M., 2002, 384 pp.

[18] Gusarenko A., “On linear equations with generalized Volterra operators”, Funct. Different. Equations, 7:1–2 (2000), 109–120 | MR | Zbl

[19] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstve summiruemykh funktsii, Nauka, M., 1966, 500 pp.

[20] Zhukovskii E. S., “Nelineinoe uravnenie Volterra v banakhovom funktsionalnom prostranstve”, Izv. vuzov. Matematika, 2005, no. 10, 17–28 | MR

[21] Gusarenko S. A., Funktsionalno-differentsialnye uravneniya s volterrovymi operatorami, Dis. kand. fiz.-matem. nauk, Permsk. politekhn. in-t, Perm, 1987, 130 pp.

[22] Danford N., Shvarts Dzh., Lineinye operatory. T. 1. Obschaya teoriya, In. lit., M., 1962, 896 pp.