Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_2_a8, author = {V. I. Chilin and I. G. Ganiev and K. K. Kudaibergenov}, title = {The {Gel'fand-Na\u\i} mark theorem for $C^*$-algebras over a ring of measurable functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--68}, publisher = {mathdoc}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_2_a8/} }
TY - JOUR AU - V. I. Chilin AU - I. G. Ganiev AU - K. K. Kudaibergenov TI - The Gel'fand-Na\u\i mark theorem for $C^*$-algebras over a ring of measurable functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 60 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_2_a8/ LA - ru ID - IVM_2008_2_a8 ER -
%0 Journal Article %A V. I. Chilin %A I. G. Ganiev %A K. K. Kudaibergenov %T The Gel'fand-Na\u\i mark theorem for $C^*$-algebras over a ring of measurable functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2008 %P 60-68 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2008_2_a8/ %G ru %F IVM_2008_2_a8
V. I. Chilin; I. G. Ganiev; K. K. Kudaibergenov. The Gel'fand-Na\u\i mark theorem for $C^*$-algebras over a ring of measurable functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2008_2_a8/
[1] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[2] Takeuti G., “$C^*$-algebras and Boolean valued analysis”, Japan J. Math., 9:2 (1983), 207–246 | MR | Zbl
[3] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985, 256 pp. | MR | Zbl
[4] Kusraev A. G., Bulevoznachnyi analiz involyutivnykh banakhovykh algebr, Izd-vo Sev.-Oset. gos. un-ta, Vladikavkaz, 1996, 96 pp. | MR
[5] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR
[6] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno-normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, 29, Izd-vo Instituta matem. SO RAN, Novosibirsk, 1995, 63–211 | MR
[7] Ganiev I. G., Chilin V. I., “Izmerimye rassloeniya $C^*$-algebr”, Vladikavk. matem. zhurn., 5:1 (2003), 35–38 | MR | Zbl
[8] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika. $C^*$- i $W^*$-algebry. Gruppy simmetrii. Razlozhenie sostoyanii, T. 1, Mir, M., 1982, 512 pp. | MR | Zbl
[9] Ganiev I. G., Kudaibergenov K. K., “Konechnomernye moduli nad koltsom izmerimykh funktsii”, Uzb. matem. zhurn., 2004, no. 4, 3–9 | MR
[10] Abasov N. M., Kusraev A. G., “Tsiklicheskaya kompaktifikatsiya i prostranstvo nepreryvnykh vektor-funktsii”, Sib. matem. zhurn., 28:1 (1987), 17–22 | MR | Zbl