On representations of the Weil--Deligne group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 48-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study admissible orthogonal and symplectic representations of the Weil–Deligne group $\mathcal{W}'(\overline K/K)$ of a local non-Archimedean field $K$. As an application of the obtained results we show that the root number of the tensor product of two admissible symplectic representations of $\mathcal{W}'(\overline K/K)$ is 1.
@article{IVM_2008_2_a6,
     author = {M. N. Sabitova},
     title = {On representations of the {Weil--Deligne} group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--52},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/}
}
TY  - JOUR
AU  - M. N. Sabitova
TI  - On representations of the Weil--Deligne group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 48
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/
LA  - ru
ID  - IVM_2008_2_a6
ER  - 
%0 Journal Article
%A M. N. Sabitova
%T On representations of the Weil--Deligne group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 48-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/
%G ru
%F IVM_2008_2_a6
M. N. Sabitova. On representations of the Weil--Deligne group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 48-52. http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/

[1] Rohrlich D. E., “Elliptic curves and the Weil-Deligne group”, Elliptic curves and related topics, CRM Proc. Lecture Notes., 4, Amer. Math. Soc., Providence, 1994, 125–157 | MR | Zbl

[2] Deligne P., “Formes modulaires et representations de $\mathrm{GL}(2)$”, Modular functions of one variable, 2, Springer-Verlag, New York, 1973, 55–105 | MR

[3] Deligne P., “Les constantes des équations fonctionnelles des fonctions $L$”, Modular functions of one variable, 2, Springer-Verlag, New York, 1973, 501–595 | MR