On representations of the Weil--Deligne group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 48-52
Voir la notice de l'article provenant de la source Math-Net.Ru
We study admissible orthogonal and symplectic representations of the Weil–Deligne group $\mathcal{W}'(\overline K/K)$ of a local non-Archimedean field $K$. As an application of the obtained results we show that the root number of the tensor product of two admissible symplectic representations of $\mathcal{W}'(\overline K/K)$ is 1.
@article{IVM_2008_2_a6,
author = {M. N. Sabitova},
title = {On representations of the {Weil--Deligne} group},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--52},
publisher = {mathdoc},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/}
}
M. N. Sabitova. On representations of the Weil--Deligne group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2008), pp. 48-52. http://geodesic.mathdoc.fr/item/IVM_2008_2_a6/